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ABSTRACT 
 

 

Causal Effect of Body Mass Index on Thyroid Cancer Risk: A 

Mendelian Randomization Analysis 

 

Background: It is indicated that high body mass index (BMI) was associated 

with an increased risk of thyroid cancer (TC) in both men and women in 

observational epidemiological studies. However, establishing a causal 

relationship has been difficult because of the possibility of unmeasured 

confounding effects or reverse causality. We conducted a Mendelian 

randomization (MR) with the use of genetic instrument variables (IVs) to 

estimate the causal effect between BMI and TC risk.  

 

Methods: We used data from 744 cases from the National Cancer Center 

(NCC), South Korea and 6,216 healthy controls including the Korean Genome 

Epidemiology Study and NCC. BMI genetic risk score, which comprises 55 

BMI-associated genetic variants, was included in the MR analysis as the 

instrumental variable. The Wald/ratio was used to find the causal odds ratio 

(OR) for the effect of BMI on TC.  
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Results: The F-statistic from the regression of BMI on genetic risk score for 

BMI (IV) was 78.5, and the IV explained 1.25% of the phenotypic variance 

for BMI. The causal OR for a 1 kg/m2 genetically instrumented BMI was 1.08 

[95% confidence interval (CI), 0.87 to 1.35]. Our result of IV estimation 

suggests that BMI is not a causal risk factor of TC. When adjusting for age, 

genetically influenced BMI was not associated with TC (OR, 1.02; 95% CI, 

0.82-1.25) for neither women nor (OR, 1.44; 95% CI, 0.75-2.75) men.  

 

Conclusions: Genetically predicted BMI is not associated with an increased 

risk of TC. This result suggests that high BMI is not a causal risk factor for 

TC and the corresponding observational association is likely explained by 

reverse causation or confounding effects.
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1. Introduction 

1.1 Background 

Over the past few decades, the incidence of thyroid cancer worldwide has 

increased at a higher rate than any other cancers [1]. In South Korea, there has been 

a rapid acceleration in the number of thyroid diagnoses, and currently, the thyroid 

cancer incidence rate in South Korea is the greatest in the world [2]. According to the 

cancer statistics in Korea, thyroid cancer was shown to be the most common cancer 

among women, with the crude incidence rate of 97.0 per 100,000; followed by breast, 

colorectal, stomach, and lung cancer. These five cancers accounted for 67.9% of cases 

in women [3].  

According to cancer statistics from 1999 to 2015, the age-standardized rate 

(ASR) for thyroid cancer incidence has notably increased in both men from 2.1 per 

100,000 in 1999 to 16.9 in 2015, and in women from 10.4 per 100,000 in 1999 to 

55.6 in 2015. Especially, from 1999 to 2011 ASR for thyroid cancer has increased 

rapidly to 22.8%, but then dropped to 13.3% annually starting in 2011 (Figure 1) [4]. 

South Korea’s thyroid cancer prevalence has increased approximately 15 times over 

the past 20 years, and ten times the average prevalence rate worldwide [5]. However, 

there has been no feasible explanation for the increasing prevalence of thyroid cancer. 

Some previous studies have suggested that the increase in thyroid cancer incidence is 

mainly due to the clinically advanced detection of thyroid cancer using thyroid 

ultrasonography [6].  
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While the substantial increase of incidence of thyroid cancer may solely be 

the result of improved detection, some risk factors (including tobacco use, alcohol 

drinking, and obesity) have been suggested to be associated with the risk of 

developing thyroid cancer from the results of some observational studies [7-9]. 

 

Fig 1. Trends in age-standardized incidences of selected cancers by 

gender in Korea [4] 

(A) Men (B) Women, 1999-2015 
Available from: https://www.e-crt.org/journal/view.php?number=2850 

 

Thyroid cancer consists of two major types of neoplasia which depend on the 

malignant transformation progression. Neoplasia which arises from follicular cells or 

thyrocytes is the most common type of thyroid cancer (TC). Specifically, 85% and 

10% of subtypes are papillary thyroid carcinoma (PTC) and follicular thyroid 

carcinoma (FTC), respectively. The second group is medullary thyroid carcinoma 

(MTC), which accounts for  5% of thyroid cancer cases, affects the parafollicular or 

C-cells [10]. 
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1.2 The risk factors for thyroid cancer 

1.2.1 The environmental and lifestyle risk factors 

Even with early detection and treatment, the incidence of thyroid cancer 

increased, but it is still uncertain if increased detection is indeed the sole cause. It is 

suggested that other factors are leading to the growth of thyroid cancer incidence. 

Therefore, environmental factors (e.g., radiation, iodine intake, and nitrates), as well 

as lifestyles (e.g., alcohol, smoking, diabetes, and obesity), and perhaps interactions 

between multiple factors are considered possible causes for a real increase in thyroid 

cancer incidence. 

Radiation exposure. An increased occurrence of thyroid cancer is well-

recognized to be caused by radiation exposure. The thyroid cancer progression is 

mainly due to two risk factors, namely, radiative dose to the thyroid gland and age of 

exposure. In particular, the risk is significantly increased with over 0.05-0.1 Gy of 

mean dose [11]. Younger age is most sensitive to radiation and diminishes with a 

higher age of exposure, and is lower among exposed adults [12]. The majority of 

these cases are papillary carcinoma (PTC), which young children perform the higher 

prevalence of solid subtype in the absence of any exposure with radiation. On the 

molecular level, the occurrence of chromosomal rearrangements is frequently found 

with RET-PTC, while BRAF and other genes rarely occur [13]. 

Iodine Intake. Both inadequate and excessive iodine intake lead to thyroid 

disease. In contrast, the role of iodine intake in thyroid cancer remains unclear, in 

spite of decades of study and debate. Epidemiological studies have also had 
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conflicting results, including several studies conducted in the U.S, China, and 

Argentina. Over the past four decades in the US, a greater dietary iodine intake was 

significantly associated with a reduced risk of thyroid cancer [14]. In a five-year 

longitudinal study of thyroid cognitive in three different areas of Han population, the 

region with redundant iodine consumption had more than 10 new cases of thyroid 

cancer, while the remaining two regions found no case [15]. When iodized salt was 

introduced in 1963, thyroid cancer incidence exhibited a more than two times increase 

in the study from northern Argentina during the period from 1960 to 2007 [16]. In 

Korea, PTC is the most popular endocrine malignancy, accounting for over 97% of 

overall thyroid cancers. Genetic variations including the mitogen-activated protein 

kinase (MAPK) pathway are commonly described in PTC, such as the mutations of  

RET/PTC, RAS, and B-type Raf kinase (BRAF) [17]. More than of 80% PTC cases 

harbor BRAF mutations in Korea. There is plenty of research considering the 

relationship between iodine consumption and the prevalence of BRAF mutations in 

PTC. A study on a large sample of PTC patients from distinct regions in China 

pointed out a significant correlation of the BRAF mutation in PTC with high iodine 

consumption [18]. Recently,  a study in Korea showed that relatively low and more 

than excessive iodine intakes played as risk factors for BRAF mutations in PTC 

patients [19]. 

Smoking. Many studies have demonstrated that cigarette smoking is 

associated with thyroid cancer risk. In a meta-analysis of 31 non-interventional 

studies, the risk of thyroid cancer was reduced in persons who had a history of 

smoking (Relative Risk, RR 0.79; 95% CI 0.70-0.88) in comparison with never-
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smokers [20]. Additionally, a study on Korean adults has shown a dose-response 

association in the ever-smokers during the years of cigarette consumption and a 

declined thyroid cancer progression, as compared to the non-smoker [21]. It can be 

explained that the potential factor influencing thyroid cancer risk is thyroid-

stimulating hormone (TSH) [22]. As compared with non-smokers or past smokers, 

TSH, thyroid hormones Thyroxine (T4), and Triiodothyronine (T3) levels were much 

lower in present smokers [22]. Another possible reason could be an anti-estrogenic 

effect of smoking, which can weaken thyroid cancer development [23]. 

Alcohol. Similar to smoking status, past observational studies have described 

a correlation between alcohol drinking and risk of thyroid cancer. A retrospective 

study indicated that in comparison with non-drinkers, current drinkers have 54% 

decrease in the risk of thyroid cancer; analogously, people who drink 1 to 2 drinks 

per day have 42% decreased risk compared to those who drink < 1 drink per day [24]. 

A combined analysis of five prospective cohort studies conducted in the U.S showed 

that more than seven drinks of alcohol per week were inversely associated with the 

risk of thyroid cancer after adjustment for smoking [25]. The reason can be the 

reduction of nodules and goiter or the constraint of dysfunction in thyroid gland 

which is responsible by frequent drinking in many human and animal studies [26]. 

Diabetes. Diabetes is associated with increased risks of various types of 

cancer, such as breast, colon, liver, pancreas, and endometrium [27-31]. 

Hyperglycaemia and hyperinsulinaemia are the most conclusive causes of the link 

between diabetes and cancer, with the latter being more definitive [32, 33]. There is, 

however, no established association of diabetes with thyroid cancer risk. Studies in 
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the past raised controversy about the risk of diabetes on thyroid cancer. A meta-

analysis of 14 cohorts and 3 case-control studies showed that women with preexisting 

diabetes had an increased risk of thyroid cancer, compared with their nondiabetic 

counterparts [34]. However, a diagnosis of diabetes may be associated with increased 

screening that led to increased detection of thyroid cancer, rather than contributing to 

a true increase in cancer incidence. Furthermore, a large prospective research study 

in the U.S has shown no significant correlation between thyroid cancer and diabetes 

[35]. In addition, a recent pooled study of 5 prospective studies from the U.S, 

including NIH-AARP study, indicated there was not enough evidence to support the 

association between diabetes history and thyroid cancer [36]. In addition, a previous 

literature review reported that the findings are uncertain - any association between 

diabetes and thyroid cancer, if exists, was not robust [37, 38].  

Obesity. In epidemiological studies, obesity is usually determined by body 

mass index (BMI) as a singular measure that can be examined in crossed studies and 

community. According to the World Health Organization (WHO), a BMI higher than 

or equal to 25 kg/m2 is overweight, while obesity is described as having a BMI equal 

to or greater than 30 kg/m2. The epidemiological studies have noted that obesity is 

associated with higher risk of numerous cancer types, including kidney, 

endometrium, colon, esophagus, postmenopausal breast, gastric, and liver cancer 

[39]. The association between obesity and risk of thyroid cancer has been considered 

for a long time. Various studies have estimated the relationship between obesity and 

thyroid cancer. Some of them found that obesity is a risk factor for thyroid cancer, 

while others showed no association between obesity and risk of thyroid cancer. In 
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particular, the meta-analysis of 21 observational studies observed obesity was 

associated with a significantly developed risk of thyroid cancer (RR, 1.33) and 

decreased the risk of medullary thyroid cancer [40]. A combined analysis of five 

prospective studies found the hazard ratio for overweight and obesity compared with 

normal-weight were 1.20 and 1.53, respectively [41]. Seven cohort studies found the 

combined RR of thyroid cancer was 1.18 for overweight and obesity combined [42]. 

However, an extended cohort study on 200,000 people for the duration of  20 years 

found no significant correlation between overweight or obesity and thyroid cancer 

[43]. Recent retrospective research analyzing Midwest cases with thyroid cancer also 

showed no remarkable difference between current BMI, median BMI in 20-year-old 

people, or lifetime maximum BMI among disease and non-disease groups [24]. 

The biological mechanisms of the association between obesity, diabetes, and 

thyroid cancer is complex and not well explained. Overweight subjects are at a 10-

time enhanced risk of diabetes [41] and they are at increased risk to develop thyroid 

cancer. Although changes in BMI slightly decreases thyroid cancer possibility related 

to diabetes, BMI alone was difficult to reveal the relationship between diabetes and 

thyroid cancer [37]. There were several potential links between obesity and thyroid 

cancer. First, some studies indicated BMI and TSH are proportional to each other 

[41]. Similarly, Fiore et al. have found remarkably higher TSH concentrations among 

individuals who were later confirmed with thyroid cancer in comparison with people 

having the benign disease [44]. Additionally, autonomous thyroid function 

(TSH<0.4 μU/ml) growth was observed to relate to a decrease in the possibility of 

PTC [45]. Second, insulin disorder, a general metabolic disorder in obesity, may 
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affect the proliferation and differentiation of follicular cells [46]. Insulin resistance 

may stimulate insulin and the Insulin-like growth factor (IGF) signal way, which are 

significant to cell growth and death. The chronically elevated circulating insulin 

levels may affect thyroid cancer risk through by insulin receptors overexpressed by 

carcinoma cells [47]. Third, adipokines such as adiponectin, leptin, and hepatocyte 

growth factor can control carcinoma cell reproduction and are possibly linked to 

improvement of the tumor [48]. Enhanced expression of leptin and its receptor were 

described in thyroid carcinoma [49]. 

Physical activity. There is a huge body of evidence showing that physical 

activity has beneficial effects on varied regards of health. Physical activity has been 

identified as a method to reduce the incidence of coronary heart disease, diabetes 

mellitus, stroke, obesity, and to reduce the impact of chronic diseases [50]. One of 

the identified risk factors for thyroid cancer was physical activity. In two case-control 

studies that examine the effect of physical activity on thyroid cancer, the possibility 

of thyroid cancer lightly decreases among subjects who engaged in physical activity 

(OR, 0.8), furthermore, frequency seemed to have more robust association than the 

duration of physical activity [51]. However, in a meta-analysis, the summarized 

thyroid cancer risk estimation of high- compared to low-level of doing exercise from 

case-control and cohort studies indicated no significant relationship between regular 

exercise and thyroid cancer risk [52]. Although there is no definite causal linkage 

between physical activity and thyroid cancer risk, an increase in physical activity has 

been reported with the reduction in obesity and changes in hormone level [53]. 
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Socioeconomic status. The effects of socioeconomic status (SES) on new 

cases of thyroid cancer are well-researched. In the study done by the Korean National 

Health and Nutrition Examination Survey, the medium-highest and highest 

household incomes have a higher risk of thyroid cancer as compared with lowest 

household income (OR 8.16 and 3.30, respectively) [2]. In other studies, higher SES 

was positively correlated with higher thyroid cancer risk; the median and high SES 

showed higher thyroid cancer risk (RR 2.29 and 3.67, respectively), compared to 

people of low SES [54]. The potential reason may be the excessive of health 

examination (overdiagnosis). Healthcare utilization can be affected by 

socioeconomic status [55]. 

Other risk factors. Gender difference in cancer susceptibility is one of the 

common conclusive findings in cancer research. For a very long period, it has been 

recognized that males are more likely to have cancer, and especially hematologic 

malignancies [56]. The gender difference in principal cancer susceptibility can be 

quantified by analyzing of incidence rates in males and females. In thyroid cancer 

(almost all diseases of the thyroid), cancer is three times less common in men than in 

women. In females, the incidence rate in specific age group accelerates clearly from 

the puberty age and peaks at 40-49 years, while the peak is at 60-69 years in male 

(Figure 2) [57]. The reasons for the disparity between men and women remain 

unclear. It has been assumed that reproductive, menstrual, and environmental factors 

can contribute to this difference. Several studies have shown that estrogen and its 

receptors are crucial for proliferation, migration, and invasion of thyroid cancer [58]. 

It exerts its growth promoting effect through a membrane-bound estrogen receptor 
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(ER). ERα activation seems to induce the development of thyroid cancer, while wild-

type ERβ plays a protective role against thyroid cancer [59]. However, such effects 

or pathways have not been successfully confirmed in human studies. 

 

Fig 2. Thyroid cancer incidence and mortality [57] 

(A) Thyroid cancer incidence by age and gender. (B) Thyroid cancer mortality rates 

by age and gender. 

1.2.2 The genetic susceptibility 

Various genetic factors have been associated with the progression of complex 

types of thyroid cancer, such as family history. Certain inherited hereditary 

abnormalities have been linked with the growth of different classes of thyroid cancer, 

and genetic impact has been indicated to be responsible for 53% of the causes of 

thyroid cancer [60]. Genetic factors (family history of thyroid cancer) has proven its 

role that having a first-degree relative (parent, sibling, or offspring) with thyroid 

cancer risk. The higher risk may be due to certain hereditary conditions, but heredity 

and family history is not known for all families. Previous studies found that a family 
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history of thyroid cancer in first-degree relatives was associated with increased 

differentiated thyroid carcinoma (DTC) risk (OR 4.1). Particularly in siblings, the 

risk of PTC was highest (OR 7.4) [61]. Another study between family history of 

thyroid cancer and the risk of PTC in French Polynesia also suggested that individuals 

with an affected first-degree relative had an increased risk of PTC with a 4.5-fold 

[62]. 

Recently, the advance of genomic techniques has allowed genetic studies for 

many types of disease. Genome-wide association studies (GWAS) has quickly 

developed as a widely-used tool to discover genetic factors associated with common 

diseases, including many types of cancers. There are several GWAS conducted in 

thyroid cancer in different populations. The first GWAS on DTC risk factors was 

found in the association of 2 variants, rs965513 on 9q.22.33 (near FOXE1) and 

rs944289 on14q13.3 (near NKX2-1), with DTC in two case-control groups of 

European descent [63]. Circulating four levels of TSH is associated SNPs, which is 

rs116909374 (NKX2–1) on 14q13.3, rs966423 (DIRC3) on 2q35, rs2439302 (NRG1) 

on 8p12, and rs334725 (NFIA) on 1p31.3 especially found in the Icelandic 

population; and in replication studies, including individuals from the U.S (Ohio), the 

Netherlands, and Spain [64]. In Asians, four SNPs rs965513 (FOXE1) on 9q22.33, 

rs944289 (PTCSC3) on 14q13.3, rs966423 (DIRC3) on 2q35 and rs2439302 (NRG1) 

on 8p12, identified by GWAS for PTC risk were established in a Han population [65]. 

Both rs965513 (FOXE1) and rs944289 (NKX2-1) were related to the elevated risk of 

sporadic Japanese PTC [66]. Previous Korean GWAS indicated that NRG1, NKX2-1, 

FOXE1, and DIRC3 have been associated with increased DTC [60]. 
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In a case-control study, Arg72Pro SNP of TP53 gene was found to contribute to 

thyroid carcinogenesis in young people, women, non-smokers, and individuals with 

high TSH levels [67]. Additionally, in a previously conducted meta-analysis, XRCC1 

gene Arg280His and Arg194Trp polymorphism were identified to be irrelevant for 

thyroid cancer risk in the Caucasian and mixed populations. However, Arg399Gln 

polymorphism in XRCC1 gene was associated with a significantly reduced risk of 

thyroid cancer [68]. Although previous studies suggest genotype-phenotype 

correlation of different effects of genetic variants on the risk of thyroid cancer, the 

pathology is yet unknown and these associations remain unclear, as described in a 

systematic review [69]. 

1.2.3 Genetic variants for body mass index (BMI) and obesity 

Many serious diseases in the developed worldwide are associated with obesity, 

such as coronary heart disease, stroke, hypertension, type 2 diabetes, some type of 

cancer, and cardiovascular diseases [70, 71]. BMI is a single index usually utilized to 

distinguish a person as underweight, normal weight, overweight or obese [72]. Also, 

almost 40-70% of the inter-individual variability in BMI, usually used to assess 

obesity, has been connected to genetic factors [73]. Several GWAS have confirmed 

that common genetic variants contribute to obesity, with 426 findings of concrete 

correlation in 127 candidate genes [71].  

The fat quantity and obesity-associated (FTO) gene was the first factor related 

to obesity recognized by GWAS, and the most extraordinary effect is seen in young 

adulthood [74]. The minor allele raises BMI by 0.39 kg/m2 (or 1,130g in body weight) 
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and the probability of obesity by 1.20 times [75]. The first two SNPs that described 

FTO as an obesity susceptibility gene are also commonly associated with BMI, 

rs9939609 and rs9930506 [76, 77]. Several studies have reported larger SNPs to be 

correlated with obesity, such as rs1121980 (first intron of FTO) on 16q12.2, 

rs8050136, rs3751812, and rs7202116 [78-80]. In addition, the relationship of FTO 

with BMI from 249,796 people having European ancestry was confirmed to be 

rs1558902; as the common noticeably related to FTO marker [81]. The relationship 

between FTO SNPs and BMI was also proven in different ethnic societies, for 

example, East Asian and African ancestry populations [82, 83]. The biological role 

of FTO gene in body mass has been well-established. Murine models overexpressing 

FTO are distinguished by the increase of white adipose tissue and adipocyte volume. 

However, germline or neural knockout mice present decreased lean and lipid quantity 

[84]. At the lower level of cell, FTO has been investigated to influence lipid mass 

through controlling reproduction and differentiation of pre-adipocytes. The function 

of FTO in adipogenesis can be credited to its N-methyl adenosine demethylase 

activity and its involvement in splicing regulation [85]. 

Other evidence for an association in the etiology of obesity is the melanocortin 

4 receptor (MC4R) gene that was published as the secondary relevant signal for 

universal obesity by the GWAS. The rs17782313 SNP near the MC4R gene was 

discovered to be connected with obesity amongst both European adolescents and 

adults, with an increased risk of 12% and 30%, respectively [86]. Different SNPs 

(rs12970134) near the MC4R gene were similarly proposed to improve the 12% risk 

of obesity amongst Europeans [87]. Consequently, several studies have examined the 



 
 

14 
 

correlation in diverse ethnic groups [88-90]. Furthermore, other SNPs including 

rs571312, rs17700144, and rs4450508, which hold in higher linkage disequilibrium 

(LD) with rs17782313 or rs12970134 SNPs, were additionally reviewed [91]. 

The beta3-adrenergic receptor gene (ADRB3) is known to be predominantly 

expressed in adipose tissue and potently stimulates lipolysis and thermogenesis. 

ADRB3 is implicated in experiments in the control of lipid metabolism, from fat 

assimilation in the digestive tract, to triglyceride storage. Therefore, via its influence 

on energy releasing of obese tissue, a damage of ADRB3 function results in obesity 

[92]. A meta-analysis of 31 investigations on over 9,000 patients has established an 

important relationship between the Trp64Arg polymorphism of the ADRB3 gene and 

BMI [93]. The association amongst different community groups presented an 

approximately comparable magnitude, and the ADRB3 locus has been confirmed to 

be one of the hereditary factors correlated with body mass. Recently, a different meta-

analysis performed in Japan established that the ADRB3 gene Trp64Arg SNPs is 

correlated with BMI [94]. 

Other genes, like LEPR gene including the glucocorticoid receptor gene (GRL), 

have been shown to be related to elevated BMI, improved weight gain, or obesity in 

several communities. Nevertheless, these findings from two up-to-date meta-analyses 

showed that there was no substantial proof of a relationship among these two genes 

and obesity [95, 96]. 
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1.3 Use of genetic instrumental variables for assessing the causal 

association 

1.3.1 Introduction to Mendelian randomization (MR) 

“Epidemiology is the study of the distribution and determinants of health-related 

states or events including disease, and the application of this study to the control of 

diseases and other health problems” [97]. A fundamental problem in epidemiology 

research is that an observational relationship between two measures may indicate a 

causal influence of one variable on the other. If we want to answer the question: “what 

causes a disease?” to prevent disease etiology, or “what would be the result of a 

treatment?” to inform public policy, or to counsel on the impact of lifestyle choice, 

then we have to consider the questions of cause and effect. Unfortunately, 

observational studies are limited by residual confounder, reverse causality, and 

multiple biases that frequently make it challenging to interpret whether such an 

association indicates a causal association. Certainly, there is a prolonged past of 

observational epidemiological investigations indicating to show influential 

relationships linking multiple risk factors and disease that upon modern research 

came out to be non-causality, most reasonably reasoning to the appearance of residual 

confounders.  

The randomized controlled trial (RCT) is the gold standard for authenticating 

causality among a medically related susceptibility and an outcome. This design 

involves dividing a set of individuals into two or more subgroups in a random way. 

These subgroups are each given different treatments. However, RCTs are expensive, 
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time-consuming, and not constantly humane or generalizable to communities outside 

the rigorously managed confines of the research. In addition, translating the 

relationship between risk factors and disease results in the observational study as a 

causal relationship relies on untestable and usually unreasonable hypotheses. This 

issue has driven to different situations where a potential factor has been broadly 

encouraged as a significant factor in disease prevention based on observational data, 

but later the proof of randomized trials did not confirm a causal explanation. For 

instance, vitamin C was initially found to be a strong inverse association with 

coronary heart disease in an observational study [98]. Nevertheless, outcomes of 

experimental data acquired from randomized trials presented an ineffective 

association with a concrete point estimation for the association [99]. More robust 

approaches are therefore needed for assessing causal relationships using 

observational data. Genetic approaches are helpful to understand causal relationship 

because hereditary modifications are being from birth and consequently unlikely to 

be confounded with environmental representatives. Mendelian randomization (MR) 

“is an approach that utilizes genetic variants robustly related with a modifiable 

exposure or biological intermediate of interest to find out the causal relationship 

between these variables and a medically relevant outcome being free from the effect 

of confounding” (see Figure 3). Although this originally emerged to investigate the 

association between adjustable exposures/biomarkers and illness, its application has 

extended to include utilization in molecular research, systems biology, 

pharmacogenomics, as well as other fields. This method is remarkable due to the 

rising of plenty of researches that estimates associations between molecular 
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intermediates (for instance, gene expression, gene methylation, metabolites, and 

metagenomic information), and those studies match all the similar problems of 

residual confounding, reverse causation as more conventional measurements [100]. 
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Fig 3. Comparison of a randomized controlled trial and MR 

Available from: Burgess, S. and Thompson, S. (2015). “Mendelian randomization: Methods for using genetic variations in causal estimation.” CRC Press, Taylor 

& Francis Group 

 

Randomized trial Mendelian randomization 

Randomization into groups Randomization by genetic variant 

Exposure higher Exposure lower 

Outcome higher Outcome lower 

Competing risk factors assumed equal by design 

Control Treatment 
Variant allele 

absent 
Variant allele 

present 
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1.3.2 The MR framework for instrumental variable analysis 

The fundamental principle used in the MR method is that naturally, random 

allocation of alleles at conception as the basis of a natural experiment, whereby a 

genetic variant is used as a proxy for a clinically related risk factor for the disease. 

The genotype is not affected by the confounding and unchangeable by the 

development of outcome. Unlike, the estimation of the outcome in observational 

studies usually is biased by the direct measurement of the modifiable risk factor. 

Consequently, in the MR the majority of variance in the modifiable risk factor will 

be explained by the genetic variant [62]. In order to be used as an instrumental 

variables, such variants must satisfy three fundamental conditions: (a) the variant is 

associated with the exposure, (b) the variant is not associated with any confounder of 

the exposure-outcome association, and (c) the variant does not affect the outcome, 

except possibly via its association with the exposure (see Figure 4) [101]. 
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Fig 4. Instrumental variable analysis to create causal estimates by MR 

[101] The three main assumptions analysis are: the instrumental variable is associated 

with the exposure (in this example a genetic variant either in isolation or in joining 

with other); the instrumental variable is associated with the outcome through the 

studied exposure only; and there is no of other factors (U: confounders) which affect 

the outcome. [102]. 

Available from: https://www.nature.com/articles/nrcardio.2017.78 

There are numerous studies utilizing those instrumental variables. The different 

strategies have been introduced to carry out the MR analysis and estimation of a 

causal effect parameter, in particular, the use of approach depending on the character 

of the population.  The most common method used is two-stage least squares (2-SLS), 

and the Wald ratio estimate was most frequently applied [103].  

𝛽̂𝐼𝑉 =  
𝛽̂𝑌|𝐺

𝛽̂𝑋|𝐺

 

The causal effect estimates 𝛽̂𝐼𝑉 obtained from the Wald method, where 𝛽̂𝑌|𝐺 is 

the regression coefficient of the regression outcome on the instrument, and 𝛽̂𝑋|𝐺 is 

the regression coefficient of the exposure on the instrument. 

The confidence interval or standard errors for the ratio estimate can be calculated 

in several ways, such as Fieller method [104], delta method (Taylor series expansion) 

[105], and bootstrapping. There are also several other methods available for 

estimation of instrumental variables, which are: the ratio of coefficients methods, 

semi-parametric methods (generalized method of moments, continuous updating 

estimator, G-estimation of the structural mean), Bayesian methods, k-class 

estimators, and limited information maximum likelihood method [103]. In particular, 
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an exposure is a continuous and outcome is a continuous or binary. Those are 

methodologies usually used in order to conduct MR analysis. 

The capacity to determine the quantity of the causality of the longstanding 

susceptibility on the modifiable exposure of interest was also acknowledged [106]. 

In addition, many candidate gene and GWAS have been reported, which now allows 

for the manipulation of MR studies that apply these association without recruiting 

new patients or designing additional research. This is indicated in the rising number 

of instrumental variable analysis in general and MR studies in specific (see Figure 

5). 
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Fig 5. Use of MR and instrumental variable approaches in the literature increases over time 

PubMed Search strategy (March of 2018): for MR analysis, “mendelian random*[tiab]” (medical subject headings 

[MeSH]; for instrumental variable analysis, “instrumental variable*[tiab]”. 
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We searched PubMed for subjects including the phrase “Mendelian 

randomization” or a related term from 1 January 2003 to 31 December 2017.  We 

excluded publications with these characteristics: (i) were discussion, reports, reviews, 

articles, surveys, study projects or technical articles; (ii) did not use MR (e.g. did not 

declare MR or a genetic IVs was used in the manual, abstract or heading and did not 

introduce ‘Mendelian randomization’ or a relevant title as a keyword); (iii) classified 

possible IVs for future MR researches; (iv) were principally methodological, utilizing 

a use of MR as a case; or (v) were reported in a health finance or economics 

publication preferably than a medicine publication. 

After searching by the key word “Mendelian randomization” on PubMed 

database, 1,050 publications were obtained. After scanning for the abstracts and titles 

and if needed the full-text report, a further 504 reports were dismissed for analyses 

noted in Figure 6, ending in 546 available Mendelian randomization studies. The 

involved studies were reported between January 2003 and December 2017. A 

summary of the genetic variant and exposures of interest studied utilized are shown 

in Table 1. The majority of studied exposures was adiposity measures including body 

mass index, lipid quantity and portion body fat (130 studies), C-reactive protein (81 

studies) and alcohol use (73 studies). 
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Fig 6. Flowchart of the literature search 

PubMed: 1050 hits 

Screened on title/ abstract 

 

• Exclusion (n = 504) 

 Reviews, educational, theoretical papers (n=187) 

 Studies not claiming to use MR (n=143) 

 Letters, commentaries, editorials (n=127) 

 Conference abstract, papers, reports (n=38) 

 Studies in health economic journals (n=7) 

 Study proposals (n=2) 

 

❖ Search Engine: PubMed 

❖ Keywords: 

mendelian[All Fields] AND ("random 

allocation"[MeSH Terms] OR ("random"[All Fields] 

AND "allocation"[All Fields]) OR "random 

allocation"[All Fields] OR "random"[All Fields]) 

AND tiab[All Fields] 

❖ Publication dates: 2003.01 – 2017.12 

Total articles in the final analysis 

(n=546) 
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Table 1. Exposures and genetic instruments in studies using MR analysis  

Exposure 
Number of 

studies 

Genes in which variation was used as 

an instrument 

BMI/ fat mass/ 

percentage body fat 
130 

FTO, MC4R, TMEM18, VEGFA, genetic 

risk score 

C-reactive protein 81 
CRP, LEPR, HNF1A, IL6R, APOE, 

genetic risk score 

Alcohol use 73 ALDH2, ADH1B, ADH1C 

Vitamin D levels 62 
GC, DHCR7/NADSYN1, CYP2R1, 

CYP24A1, FLG, VDR, genetic risk scores 

Homocysteine 27 MTHFR 

“Folate 

metabolism” 
10 MTHFR 

LDL-cholesterol 16 

SORT1, PCSK9, LDLR, HMGCR, 

ABCG8, APOE, APOB, genetic risk 

score 

HDL-cholesterol 25 
LIPC, LIPG, ABCA1, LCAT, genetic risk 

score 

Total cholesterol 6 APOE 

Remnant 

cholesterol 
5 

APOA5, TRIB1, GCKR, genetic risk 

score 

Remnant 

cholesterol: HDL 

ratio 

1 LPL 

Triglycerides 5 APOA5, genetic risk score 

Lipoprotein(a) 7 LPA 

Lp-PLA2 (activity) 4 PLA2G7, PLA2G2A 

ApoAI 1 APOA5-A4-C3-A1 

ApoB 1 APOB 
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Uric acid 7 
SLC2A9, ABCG2, SLC17A1, SLC22A11, 

SLC22A12, genetic risk score 

IL-6/ IL-6 receptor 

signaling 
5 IL6, IL6R 

Fetuin-A 4 AHSG 

Adiponectin 4 ADIPOQ 

Fibrinogen 4 FIBA-B-G cluster, FGB 

Fasting glucose 3 genetic risk score 

HOMA-IR 2 GCKR, ADAMTS9, PPARG2 

Beta-cell function 2 ADAMTS9, TCF7L2 

Non-fasting glucose 1 GCK, G6PC2, ADCY5 DGKB, ADRA2A 

Fasting insulin 1 INSR, IRS1 

Type 2 diabetes 2 genetic risk score 

Type 1 diabetes 1 genetic risk score 

Milk consumption 3 LCT 

Iron status 

(ferritin/serum 

iron) 

3 HFE, TMPRSS6 

Bilirubin 3 UGT1A1 

SHBG 3 SHBG 

Testosterone 2 SHBG, FAM9B, CYP19A1, ESR2 

Prenatal 

testosterone 

exposure 

1 Sex of co-twin 

Caffeine (intake) 2 CYP1A2, NAT2, GSTA1 

Vitamin B-12 2 FUT2, TCN2, CUBN 

Total 

transcobalamin 
1 TCN2 

Smoking 2 CHRNA5–CHRNA3–CHRNB4 cluster 

PAI-1 levels 2 PAI14G/5G 
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Malaria infection 2 HbAS phenotype 

IL-18 2 IL18 

Macrophage 

migration 

inhibitory factor 

2 MIF 

6-propylthyouracil 

tasting 
1 TAS2R38 

Monocyte 

chemotactic 

protein-1 

1 CCL2 

Leukocyte telomere 

length 
1 genetic risk score 

Triacylglycerol 1 genetic risk score 

sPLA2-IIa 1 PLA2G2A 

γ-glutamyl 

transferase 
1 GGT1 

Δ5-desaturase and 

Δ6-desaturase 

activity 

1 FADS1 

Monocyte CD36 

expression 
1 CD36 

Factor VII 1 F7 

Retinol-binding 

protein 4 
1 RBP4 

Complement factor 

H 
1 CFH 

Surfactant protein 

D 
1 SP-D 

MiR-34b 1 Pri-miR-34b/c 

ICAM-1 1 ICAM1 
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Table 2. Available results of the association between obesity (BMI) and 

specific diseases using MR analysis 

Outcome Instrument Description of results Reference 

Type 2 diabetes 30 BMI-associated 

variants 

The potential causal 

association between 

abdominal obesity and 

hyperglycemia can be 

forced by increased insulin 

resistance, which is 

different with the possible 

causal association between 

overall obesity and insulin 

secretion. 

[107] 

P-selectin 1 SELP 

CSF ApoE 1 APOE, genetic risk score 

NT-pro-BNP 1 BNP 

APC resistance 1 FVL 

ACE activity 1 ACE D/I 

Prothrombin levels 1 F2 

Beta-carotene 1 BCMO1 

Arsenic metabolism 

efficiency 
1 AS3MT 

IL-1RA 1 IL1RN 

Inflammatory/auto-

immune disease 
1 

IL23R, PTPN2, PTPN22, SH2B3, IL2RA 

(+ 31 others)  

Ceruloplasmin 1 CP 

Organophosphate 

exposure 
1 PON1 
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Hay fever, asthma 

and lung function 

26 BMI-associated 

variants and genetic 

risk score 

Increasing BMI is causally 

associated with a greater 

prevalence of asthma and 

reduced lung function but 

not related to hay fever or 

biomarkers of allergy. 

[108] 

Cardiometabolic 

diseases 

15 (SNPs) for 

childhood BMI 

A genetic predisposition to 

childhood BMI was related 

to elevated risk of type 2 

diabetes and coronary artery 

disease in adult life. 

[109] 

 

A polygenic risk 

score comprising 93 

SNPs associated 

with BMI 

Higher BMI and increased 

risk of cardiometabolic 

diseases have been 

observed. 

[110] 

Intracranial 

aneurysms (IA) and 

abdominal aortic 

aneurysms (AAA) 

97 BMI-associated 

variants, genetic risk 

score 

There are potentially causal 

associations between BMI 

and risk of AAA. 

[111] 

Posttraumatic stress 

disorder (PTSD) 

High-resolution 

polygenic score 

A putative causal 

association between 

genetically determined 

female body shape and 

PTSD, which may be 

interfered by evolutionary 

mechanisms implicated in 

sexual behaviors among 

human 

[112] 

Alzheimer's disease 32 BMI-associated 

variants 

Heretical and thus lifelong 

low BMI is not related to 

[113] 
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elevated risk of Alzheimer's 

disease in the overall 

population. The low BMI is 

not a cause for Alzheimer's 

disease. 

Gastric cancer 37 BMI-associated 

variants, genetic risk 

score 

High BMI was associated 

with risen gastric cancer 

risk. 

[114] 

Venous 

thromboembolism 

(VTE) 

32 BMI-associated 

variants 

Proving for a causality 

between high BMI and risk 

of VTE, declining obesity 

levels will likely result in 

lower incidence of VTE. 

[115] 

Ischemic stroke 

subtypes 

77 BMI-associated 

variants 

Genetically predicted BMI 

was not significantly 

correlated with any 

ischemic stroke subtype. 

[116] 

Breast cancer 

survival 

94 BMI-associated 

variants, genetic risk 

score 

A causal impact of elevated 

BMI on decreased breast 

cancer survival for ER-

positive breast cancer. 

Evidence of a causal impact 

of higher BMI on survival 

for ER-negative breast 

cancer individuals is 

inadequate. 

[117] 

Pediatric disease 97 BMI-associated 

variants, genetic risk 

score 

Causal effects of increased 

BMI on susceptibility to 

pediatric-onset multiple 

sclerosis were identified. 

[118, 119] 
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Coronary heart 

disease, stroke 

subtypes, and type 2 

diabetes 

97 BMI-associated 

variants and 49 

SNPs for waist-to-

hip ratio adjusted for 

BMI (WHRadjBMI) 

Both BMI and 

WHRadjBMI have causal 

effects on CHD and type 2 

diabetes mellitus. 

WHRadjBMI may have a 

more robust effect on the 

risk of stroke. 

[120] 

Atrial fibrillation 

(AF)  

FTO genotype 

(rs1558902) and a 

BMI gene score 

comprising 39 SNPs 

There was a causal 

relationship between BMI 

and incident AF. 

[121] 

Type 1 diabetes 

(T1D) 

23 SNPs associated 

with childhood 

adiposity 

This provides genetic 

support for a relationship 

between childhood 

adiposity and T1D 

possibility. 

[122] 

Lung cancer 97 BMI-associated 

variants 

A causal effect of BMI on 

lung cancer risk for two of 

the three main histological 

subtypes, with confirmation 

of a risk development for 

squamous cell carcinoma, 

and for small cell lung 

cancer, but not for 

adenocarcinoma 

[123] 

Pancreatic cancer 95 BMI-associated 

variants 

A strong causal relationship 

of raising BMI with the risk 

of pancreatic cancer was 

observed. 

[124] 
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Thyroid hormone 

levels 

32 BMI-associated 

variants 

Higher BMI had higher 

Free T3 (FT3) but not FT4 

levels, proving that higher 

BMI/fat mass has a causal 

effect in raising Free T3 

(FT3) levels. 

[125] 

Endometrial cancer 77 BMI-associated 

variants 

BMI is causally related to 

the risk of endometrial 

cancer. 

[126] 

Multiple sclerosis 

(MS) 

70 BMI-associated 

variants 

Genetically high BMI is 

associated with risk of MS, 

giving evidence for a causal 

role for obesity in MS 

etiology. 

[127] 

Peripheral arterial 

disease (PAD) 

14 BMI-associated 

variants 

There was a causal 

relationship between 

obesity and PAD. 

[128] 

Psychiatric disorders 

(PD) 

97 BMI-associated 

variants 

Higher BMI may not 

increase the risk of bipolar 

disorder and schizophrenia. 

[129] 

Breast cancer risk 84 BMI-associated 

genetic variants 

BMI predicted from 

variants is inversely 

correlated with the risk of 

both pre- and 

postmenopausal breast 

cancer. 

[130] 
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1.4 Study objectives 

The risk of multiple diseases including thyroid disease rises as body mass index 

(BMI) increases. Both overweight and obesity have been related to an increased risk 

of thyroid cancer in males and females. However, recent studies did not confirm this 

result. It remains to be unclear about that association. Furthermore, the observational 

association between BMI and thyroid cancer can be due to confounders. For example, 

there may be another factor decreasing BMI and causing thyroid cancer at the same 

time. 

Mendelian randomization (MR) is a method using an instrumental variable (IVs) 

to indicate the causal relationship in observational research. Gene variations which 

are linked with environmental exposures or intermediary phenotypes can be handled 

as IVs to assess the influence of the exposure on a disorder outcome. Random 

assortment of gene variations during gametogenesis indicates that possible 

confounders exceed the possibility to be evenly allocated. Furthermore, the effect 

estimates resulting from IVs analysis is suitable to be independent of residual 

confounder and reverse causal relationship since the outcome cannot influence the 

genotypes. This study utilizes MR method in the estimation of the causal effect of 

BMI on the risk of thyroid cancer (Figure 7). 



 
 

34 
 

 

 

 

 

 

 

 

 

Fig 7. Directed acyclic design of instrumental variable analysis utilizing genetic variants as representatives for environmental 

exposures 

 The instrument (genetic variants: Z) associated with an exposure (BMI: X) can be utilized as substitutes to determine the result of the 

exposure (X) on the outcome (Thyroid cancer: Y). The three IVs conditions are symbolized by the arrows: (1) the IVs in this schematic 

(FTO, MC4R, MC1R gene variants) is robustly linked with the exposure; (2) the IVs is not associated with confounder (C); and (3) 

there is no alternative route that the IVs affects the outcome other than through the exposure.  

 

Z: Instrument (genetic variant) 

e.g. FTO, MC4R, MC1R 

X: BMI 

(exposure) 

C: Confounder 

e.g. smoking, physical activity 

Y: Thyroid cancer 

(outcome) 
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2. Materials and Methods 

2.1 Study population 

Our study included individual participant data and genetic material from a large 

hospital-based case-control study by using the data from the Cancer Screenee Cohort 

of the National Cancer Center (NCC) in Korea from August 2002 to July 2014 and 

the Health Examinee (HEXA), and Rural cohort of the Korean Genome 

Epidemiology Study (KoGES) shared control study (Figure 8). The NCC cohort 

study consisted of 41,109 subjects; the HEXA shared control only is one of the 

KoGES population-based cohorts which were launched in 2001 intending to 

distinguish risk factors of life-style related multiple disorders including dyslipidemia, 

type 2 diabetes, and hypertension. Roughly 30% of HEXA participants at the age of 

40-69 years who were randomized shared the comparison group for Korean cancer 

and coronary artery disease (CAD) GWAS. The Rural cohort of KoGES was selected 

from amongst citizens aged 40-69 years of three provincial centers of Korea. During 

2004 and 2008, 8,702 men and women were obtained for the baseline. Among them, 

4,052 individuals without any diseases have no records of hypertension, diabetes, 

hyperlipidemia, heart disease, blood vessel disease of the brain, or cancer were also 

chosen for SNP genotyping. 

The environmental and lifestyle information was collected from all of the 

patients who completed a self-administered questionnaire about demography and 

lifestyle characteristics such as age, gender, smoking, alcohol consumption, and 

physical exercise (Appendix 1). 
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The height and weight of each subject were measured with an Inbody 3.0 

(Biospace, Seoul, Korea) body composition analyzer or X-SCAN PLUS II Body 

Composition Analyzer (Jawon Medical, Gyeongsan, Korea). Body mass index (BMI) 

was measured as weight (kg) / (height (m))2. Ethical approval was obtained for all 

cohorts in the corresponding centers. All participants provided written informed 

consent prior to participation, and the Institutional Review Board of the NCC 

approved the study protocols (IRB No. NCC2016-0088) (Appendix 2). 
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Fig 8. Flowchart of selecting study subjects in the study

Cancer Screenee Cohort of the National Cancer 

Center 

 August 2002 to July 2014  

(n=41,109) 

Korean Genome Epidemiology Study (KoGES) 

• The Health Examinee (HEXA) (n=3,700) 

• The Rural Cohort (n=4,052) 

• Potential cases diagnosed with 

thyroid cancer (ICD10 code C73) 

• Subjects who had any other type of 

cancer case were excluded 

• 32,969 controls were excluded 

Missing questionnaire (n=1,517) 

Thyroid disease (n=1,773) 

Thyroid surgery (n=112) 

Thyroid-related medicine (n=123) 

Missing blood sample (n=192) 

Missing genetic information (n=29,252) 

 

Total of controls from KoGES 

(n=5,474) 

Total subjects with thyroid cancer (n= 1,104) 

Total subjects with potential controls (n=33,711) 

The Health Examinee (HEXA) (n= 3,689) 

The Rural Cohort (n=1,785) 

• Healthy participants with no history 

of hypertension, type 2 diabetes, 

hyperlipidemia, heart disease, or any 

type of cancer 

    

• 360 cases were excluded 

Missing questionnaire (n=135) 

Missing blood sample (n=192) 

Missing genetic information (n=33) 

Cases with Thyroid Cancer 

(n=744) 

Total of controls 

(n=6,216) 
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2.2 Genotyping 

The genotyping was performed using the Infinium OncoArray-500K 

BeadChip (Illumina Inc., San Diego, California) with 499,170 SNPs (275,691 

genome-wide tag SNPs and 223,479 cancer-specific SNPs). The DNA samples are 

denatured and neutralized to prepare them for isothermal amplification. 

Approximately 200 ng of genomic DNA was amplified and randomly fragmented 

into 25 – 125-base pair fragments. Genomic DNA was subjected to initial 

amplification in a 40-μL reaction volume containing 20 μL genomic DNA at a 

concentration of 10 ng/μL. The denatured DNA is isothermally amplified overnight.  

The whole-genome amplification process increases the amount of the DNA 

sample up to several thousand-fold without significant amplification bias. A 

controlled enzymatic process fragments the amplified product. The process uses 

endpoint fragmentation to avoid over-fragmenting the sample. After an isopropanol 

precipitation, centrifugation at 4°C collects the fragmented DNA. The precipitated 

DNA is re-suspended in hybridization buffer. Samples are implemented to a 

BeadChip and separated by an IntelliHyb seal (or gasket) and the loaded BeadChip is 

hatched overnight in the Illumina Hybridization Oven. The amplified and fragmented 

DNA samples anneal to locus-specific 50-mers during hybridization. Unhybridized 

and non-specifically hybridized DNA is removed away and the BeadChip is served 

for staining and extension. Single-base extension of the oligos on the BeadChip, using 

the captured DNA as a template, incorporates detectable labels on the BeadChip and 

determines the genotype call for the sample. XStain occurs in a capillary flow-

through chamber. Using a laser to excite the fluorophore of the single-base extension 
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product on the beads, the Illumina HiScan or iScan System scans the BeadChip. The 

scanner records high-resolution images of the light emitted from the fluorophores. 

The images were analyzed using Genotyping Console™ Software (Affymetrix).  

After quality controlling for monomorphic variants, Minor Allele Frequency 

(MAF) < 0.01, call rate < 95%, and deviation from Hardy-Weinberg Equilibrium (p-

value < 1x10-6), a total of 345,675 single nucleotide polymorphisms (SNPs) were 

available for further analysis. The genetic variant which passed the above quality-

controlling criteria was selected for this study. 

2.3 Selection of BMI-associated SNPs 

SNPs of the biggest GWA study of BMI were classified from reported records of 

the GIANT (Genetic Investigation of Anthropometric Traits) consortium 

(http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium) 

in 2015. SNPs associated with BMI at the genome-wide significance level (p < 5×10-

8) in the population of all ancestry were involved (see Figure 9). We chose 

independent SNPs which were described as r2 threshold of 0.001 or within 10,000 kb 

physical distance, based on a 1,000 Genome Project dataset. 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
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Fig 9. Procedure for selecting instruments for assessing the effect of BMI on the TC risk

Identify independent, lead SNPs from 

GWA study of BMI dataset (GIANT) 

Select genome-wide significant SNPs 

(p < 5×10-8) as candidate instruments 

Check whether candidate SNPs are 

represented in thyroid GWAS dataset 

 

LD threshold for selecting (r2 < 0.001) 

Physical distance within (10,000 kilobases)  

Include SNPs in Mendelian 

randomization analysis 
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2.4 Statistical analysis 

Multiple IVs are aggregated into a single univariate score. This score is used as 

a single IV for BMI rather than multiple IVs. In MR, this is well-known as the genetic 

risk score. Genetic risk scores for BMI (BMI-GRS) which are used for MR are 

composed using external weights and determined using the following equation:  

GRS = ∑ 𝛽𝑖
55
𝑖=1 𝑆𝑁𝑃𝑖 

where 𝛽𝑖 is the effect of the ith SNP for BMI reported in the GIANT GWAS and 

𝑆𝑁𝑃𝑖 is the dosage of the effect allele of the ith SNP that can be represented as random 

variables taking the value 0, 1, or 2.  

First, to access whether weighted GRS was associated with BMI and the 

proportion of BMI variation explained by BMI-GRS, we used linear regression model 

within controls. To assess the statistical significance of the association of the 

instrument with BMI (BMI-GRS), an F statistic was calculated by the following 

formula, where k is the number of variants and n is the sample size: 

𝐹 =  
𝑅2(𝑛 − 1 − 𝑘)

(1 − 𝑅2) × 𝑘
 

The IV for the exposure of interest is considered to be sufficiently strong if the 

F-statistic is larger than 10. We then fit a logistic regression model with BMI-GRS 

as independent variable and thyroid cancer case-control status as an outcome. 
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We tested whether potential confounding factors (age, gender, drinking, smoking 

status, and regular exercise) were associated with observation BMI group and BMI-

GRS group by using 𝑥2 tests. 

 The possible causal association between BMI (X) and thyroid cancer risk (Y) 

was modeled using BMI-GRS as the instrumental variable. Particularly, the causal 

effect (𝛽𝑌𝑋) was estimated by using the Wald estimator [104]: 

 

 

Where 𝛽𝑍𝑌 is the natural log-scale odds ratio (OR) for thyroid cancer risk associated 

with the instrumental variable; 𝛽𝑍𝑋 is the regression coefficient of the instrumental 

variable for BMI. 

The standard error for the causal effect was computed using the delta method 

[131]: 

𝑆𝐸𝑌𝑋 =  √(
𝑆𝑌𝐺

𝛽𝑋𝐺
)

2

+ 
(𝑆𝑋𝐺𝑆𝑌𝐺)2

𝛽𝑋𝐺
4  

𝛽𝑌𝐺 and 𝛽𝑋𝐺 are standard errors of YG and XG, respectively. 

To verify that violating of the third conditions of IV analysis was not influencing 

the estimate of the causal association which is the potential pleiotropic effect of the 

genetic variants, the logistic regression (logistic analysis) was used.  

Analyses were implemented using PLINK (v 1.07), R (v 3.41). A two-sided p-

value < 0.05 was considered statistically significant unless stated otherwise.

𝛽𝑌𝑋 =  
𝛽𝑍𝑌

𝛽𝑍𝑋
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3. Result 

3.1 Characteristics of study participants 

Table 3 shows the general characteristics of the study participants which 

includes 744 cases and 5,216 controls. It provides baseline characteristics based on 

age, BMI, alcohol consumption, smoking status, and regular exercise. The mean age 

of study participants was 55 years for controls and 48 years for cases. In the total 

population, high proportion of cases was engaged in regular exercise (p<.0001). In 

male group, there were significant differences in BMI (p<.0001) and regular exercise 

(p<.0001). In female group, there were significant differences in BMI (p<.0001), 

alcohol consumption (p<.0001), smoking status (p<.0001), and regular exercise 

(p<.0001).
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Table 3. General characteristics of the study participants 

 All Male Female 

 
Control 

(n=6,216) 

Case 

(n=744) 
p value 

Control 

(n=2,719) 

Case 

(n=229) 
p-value 

Control 

(n=3,497) 

Case 

(n=515) 
p value 

Age (yrs) 54.8 ± 8.8 48.5 ± 8.5 <.0001 56.2 ± 8.9 47.8 ± 8.0 <.0001 53.7 ± 8.7 48.9 ± 8.6 <.0001 

BMI (kg/m2) 24.1 ± 3.1 24.0 ± 3.0 0.213 24.3 ± 2.9 25.6 ± 2.5 <.0001 24.0 ± 3.2 23.2 ± 2.9 <.0001 

BMI (kg/m2), n (%)   0.872   <.0001   0.001 

Normal (<23) 2,323 (37.4%) 283 (38.0%)  901 (33.1%) 31 (13.5%)  1,422 (40.7%) 252 (48.9%)  

Overweight (23-24.9) 1,644 (26.4%) 199 (26.7%)  742 (27.3%) 72 (31.4%)  902 (25.8%) 127 (24.7%)  

Obese (≥25) 2,249 (36.2%) 262 (35.2%)  1,076 (39.6%) 126 (55.0%)  1,173 (33.5%) 136 (26.4%)  

Alcohol 

consumption 
  0.241   0.037   <.0001 

Nondrinker 2,953 (47.5%) 336 (45.2%)  581 (21.4%) 35 (15.3%)  2,372 (67.8%) 301 (58.4%)  

Drinker 3,263 (52.5%) 408 (54.8%)  2,138 (78.6%) 194 (84.7%)  1,125 (32.2%) 214 (41.6%)  

Smoking status   0.434   0.710   <.0001 

Nonsmoker 4,117 (66.2%) 504 (67.7%)  810 (29.8%) 65 (28.4%)  3,307 (94.6%) 439 (85.2%)  

Smoker 2,099 (33.8%) 240 (32.3%)  1,909 (70.2%) 164 (71.6%)  190 (5.4%) 76 (14.8%)  

Regular exercise   <.0001   <.0001   <.0001 

No 3,360 (54.1%) 322 (43.3%)  1,423 (52.3%) 83 (36.2%)  1,937 (55.4%) 239 (46.4%)  

Yes 2,856 (45.9%) 422 (56.7%)  1,296 (47.7%) 146 (63.8%)  1,560 (44.6%) 276 (53.6%)  
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3.2 The variants selected for the analysis 

Table 4 depicts the variants chosen for the study with the nearest gene, 

chromosome, physical base-pair position, effect alleles and frequencies, and the 

coefficient value of the effect on BMI. Overall, a total of 55 SNPs was selected for 

analysis as IVs. These SNPs satisfied the selection procedure which was illustrated 

in Figure 7. Their functions are presented in Supplementary Table 1.
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Table 4. The selected-variants associated with BMI 
 

SNP Genes Chromosome BP 
Effect 

Allele 

Non-Effect 

Allele 

EA 

Frequency 
EA beta SE beta p-value 

rs1000940 RABEP1 17 5223976 G A 0.225 0.0184 0.0033 1.81E-08 

rs10132280 STXBP6 14 24998019 A C 0.3333 -0.0221 0.0033 1.40E-11 

rs10733682 LMX1B 9 128500735 A G 0.425 0.0188 0.003 2.46E-10 

rs10840100 TRIM66 11 8626013 G A 0.725 0.0206 0.003 6.67E-12 

rs11030104 BDNF 11 27641093 A G 0.8 0.0416 0.0037 6.66E-30 

rs11165643 PTBP2 1 96696685 C T 0.425 -0.0221 0.003 1.43E-13 

rs11191511 CNNM2 10 104759699 T C 0.9417 -0.0295 0.0052 2.01E-08 

rs11692326 Intergenic 2 207971524 T C 0.2417 0.0194 0.0036 4.80E-08 

rs12286929 CADM1 11 114527614 G A 0.4333 0.0211 0.0029 5.44E-13 

rs12429545 OLFM4 13 53000207 G A 0.9 -0.0324 0.0044 3.15E-13 

rs12940622 RPTOR 17 76230166 A G 0.4583 -0.0183 0.0029 3.64E-10 

rs13021737 TMEM18 2 622348 A G 0.125 -0.0604 0.0039 5.44E-54 

rs13025697 Intergenic 2 6516986 T C 0.01695 -0.061 0.0067 7.14E-20 

rs13130484 GNPDA2 4 44870448 C T 0.5667 -0.0398 0.003 8.01E-41 

rs13201877 IFNGR1 6 137717234 A G 0.9167 -0.0236 0.0043 4.29E-08 

rs13329567 Intergenic 15 65891421 T C 0.2167 -0.0307 0.0035 1.53E-18 
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SNP Genes Chromosome BP 
Effect 

Allele 

Non-Effect 

Allele 

EA 

Frequency 
EA beta SE beta p-value 

rs1421085 FTO 16 52358455 C T 0.45 0.0803 0.003 2.17E-158 

rs1441264 MIR548A2 13 78478920 A G 0.55 0.0172 0.0031 2.96E-08 

rs1460676 FIGN 2 164275935 T C 0.7833 -0.0209 0.0038 4.98E-08 

rs14810 KCTD15 19 38996743 C G 0.325 -0.0183 0.0033 1.92E-08 

rs1516725 ETV5 3 187306698 T C 0.0917 -0.0448 0.0044 1.39E-24 

rs1528435 UBE2E3 2 181259207 T C 0.5833 0.0175 0.003 4.77E-09 

rs16851483 RASA2 3 17810167 G T 0.9083 -0.0478 0.0075 1.85E-10 

rs17094222 HIF1AN 10 51491638 C T 0.2083 0.0249 0.0037 2.19E-11 

rs17724992 PGPEP1 19 76290622 A G 0.6917 0.0196 0.0034 7.79E-09 

rs1928295 TLR4 9 47856286 C T 0.425 -0.0182 0.0029 4.32E-10 

rs2060604 Intergenic 8 42867698 T C 0.5583 0.0203 0.003 9.46E-12 

rs2112347 HMGCR 5 27380376 G T 0.375 -0.0254 0.003 1.96E-17 

rs2176598 HSD17B12 11 53873481 T C 0.2 0.0185 0.0033 3.47E-08 

rs2229616 MC4R 18 75037314 C T 0.9833 0.0899 0.0113 2.07E-15 

rs2365389 FHIT 3 15507246 C T 0.6583 0.0195 0.003 1.35E-10 

rs2820292 NAV1 1 5102745 A C 0.4917 -0.0181 0.0029 5.45E-10 

rs2836754 ETS2 21 80177445 C T 0.65 0.0169 0.003 1.61E-08 
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SNP Genes Chromosome BP 
Effect 

Allele 

Non-Effect 

Allele 

EA 

Frequency 
EA beta SE beta p-value 

rs3800229 FOXO3 6 33741232 T G 0.6917 0.0175 0.0032 4.95E-08 

rs3817334 MTCH2 11 53980149 C T 0.55 -0.0256 0.003 1.17E-17 

rs3888190 ATP2A1 16 69354230 A C 0.3583 0.0311 0.003 3.45E-25 

rs4615388 Intergenic 6 32093039 A T 0.25 0.0247 0.0045 4.05E-08 

rs4740619 CCDC171 9 45545498 T C 0.5333 0.017 0.0029 6.36E-09 

rs543874 SEC16B 1 4409291 G A 0.2667 0.0497 0.0037 2.29E-40 

rs6091540 ZFP64 20 78942046 C T 0.725 0.0185 0.0033 2.14E-08 

rs6457796 UHRF1BP1 6 31601585 T C 0.7417 -0.0209 0.0033 2.54E-10 

rs6477694 EPB41L4B 9 47608600 C T 0.3583 0.0169 0.003 1.71E-08 

rs6567160 MC4R 18 75030739 C T 0.2833 0.0562 0.0035 6.68E-59 

rs657452 AGBL4 1 1459358 A G 0.4167 0.0227 0.0031 2.12E-13 

rs6804842 RARB 3 14452939 A G 0.425 -0.0183 0.003 8.02E-10 

rs7138803 FAIM2 12 57928867 G A 0.5583 -0.032 0.003 5.12E-26 

rs7243357 GRP 18 74999857 G T 0.1333 -0.0219 0.0038 9.14E-09 

rs7599312 ERBB4 2 12694008 G A 0.7083 0.0214 0.0033 4.73E-11 

rs7715256 GALNT10 5 29698313 G T 0.45 0.0168 0.0029 8.85E-09 

rs7903146 TCF7L2 10 51856937 T C 0.25 -0.0235 0.0033 1.10E-12 
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SNP Genes Chromosome BP 
Effect 

Allele 

Non-Effect 

Allele 

EA 

Frequency 
EA beta SE beta p-value 

rs891389 NPC1 18 73954796 C T 0.675 -0.0209 0.0037 1.62E-08 

rs9374842 LOC285762 6 34052834 T C 0.7417 0.0196 0.0034 7.20E-09 

rs943005 Intergenic 6 32085035 T C 0.1 0.0444 0.0038 4.52E-31 

rs9540493 MIR548X2 13 61759583 G A 0.55 -0.0182 0.0031 3.95E-09 

rs9579083 MTIF3 13 60660968 G C 0.7667 -0.0295 0.0046 1.43E-10 

BMI, body mass index; BP, base pair; EA, effect allele; SE, standard error. 



 
 

50 
 

3.3 The body mass index and genetic risk score (BMI-GRS) 

The BMI-GRS was normally distributed (mean, 0.0002979; median, 0.0002974; 

SD, 0.001194271; minimum, -0.0045273; maximum, 0.0048982) (see Figure 10) 

and explained 1.24% of the variance in BMI (R2 = 0.0124), as calculated from linear 

regression analyses with BMI as the outcome variable. The F-statistic for the BMI-

GRS and its association with BMI was 78.4, which is large. This value means that 

weak instrument bias was unlikely.
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Fig 10. The distribution of weighed genetic risk score 
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The mean BMI-GRS was similar in thyroid cancer cases (0.0003275 ± 

0.0012199) and in controls (0.00029439 ± 0.0011912) and was normally distributed 

(p = 0.39) by using Shapiro-Wilk’s test (Figure 11). 

 
 

Fig 11. The distribution of weighted genetic risk score by case and 

control group 
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There was also no difference of the mean BMI-GRS in female group (0.0002908 

± 0.0011941) and in male group (0.0003075 ± 0.0011946) (Figure 12). 

 

 
 

Fig 12. The distribution of weighted genetic risk score by gender 
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3.4 Association of potential confounders with BMI group and 

BMI-GRS group 

The age, gender, drinking, smoking status, and regular exercise were all 

remarkably associated with BMI and risk of thyroid cancer and thus, being the 

potential confounders for the observational BMI-Thyroid cancer association. 

Potential confounders were dichotomized: gender (female and male); smoking status 

(non-smoker vs smoker); drinking status (non-drinker vs drinker); high regular 

exercise (yes vs no) (Table 5). In contrast, there was no association between BMI-

GRS (IV) and age, gender, drinking, smoking status, and regular exercise.  
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Table 5. Association of potential confounders with BMI group and BMI-GRS group 
 

* Mean ± standard deviation

Potential 

confounders 

BMI Group GRS Group 

Group 

I 

Group 

II 

Group 

III 

Group 

IV 
p-value 

Group 

I 

Group 

II 

Group  

III 

Group  

IV 
p-value 

Age (Mean, SD*) 52.6 ± 9.6 54.0 ± 8.8 54.8± 8.6 55.1 ± 8.8 < .0001 53.9 ± 9.1 54.0 ± 8.9 53.8± 9.0 54.7 ± 9.1 0.014 

BMI 20.4 ± 1.2 23.0 ± 0.6 24.9 ± 0.6 28.1 ± 2.0 < .0001 23.6 ± 2.9 24.0 ± 3.0 24.2 ± 3.1 24.5 ± 3.1 < .0001 

Gender (%)           

Female 
1,135 

(65.2%) 

1,054 

(60.6%) 

894 

(51.3%) 

929 (53.4%) 

< .0001 

1,029 

(59.1%) 

979 

(56.3%) 

999 

(57.4%) 

1,005 

(57.8%) 
0.414 

Male 
605 

(34.8%) 

685 

(39.4%) 

847 

(48.7%) 

811 (46.6%) 712 

(40.9%) 

760 

(43.7%) 

741 

(42.6%) 

735 

(42.2%) 

Smoking (%)           

Non-smoker 
1,186 

(68.2%) 

1,194 

(68.7%) 

1,117 

(64.2%) 

1,124 

(64.6%) 
0.005 

1,184 

(68.0%) 

1,129 

(64.9%) 

1,146 

(65.9%) 

1,162 

(66.8%) 
0.256 

Smoker 
554 

(31.8%) 

545 

(31.3%) 

624 

(35.8%) 

616 (35.4%) 557 

(32.0%) 

610 

(35.1%) 

594 

(34.1%) 

578 

(33.2%) 

Drinking (%)           

Non-Drinker 
878 

(50.5%) 

824 

(47.4%) 

788 

(45.3%) 

799 (45.9%) 

0.011 

844 

(48.5%) 

803 

(46.2%) 

828 

(47.6%) 

814 

(46.8%) 
0.554 

Drinker 
862 

(49.5%) 

915 

(52.6%) 

953 

(54.7%) 

941 (54.1%) 897 

(51.5%) 

936 

(53.8%) 

912 

(52.4%) 

926 

(53.2%) 

Regular exercise 

(%) 

    
 

    
 

No 
983 

(56.5%) 

881 

(50.7%) 

875 

(50.3%) 

943 (54.2%) 

< .0001 

892 

(51.2%) 

953 

(54.8%) 

909 

(52.2%) 

928 

(53.3%) 
0.180 

Yes 
757 

(43.5%) 

858 

(49.3%) 

866 

(49.7%) 

797 (45.8%) 849 

(48.8%) 

786 

(45.2%) 

831 

(47.8%) 

812 

(46.7%)   
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In order to check the third assumption that the IVs do not affect the outcome, 

except possibly via its association with the exposure, the GRS was classified into four 

subgroups based on the quantile. We have not found any significant association 

between the highest quartile of GRS with the risk of thyroid cancer. The effect 

estimated from logistic regression in group 2 was 0.92 (95% CI 0.74-1.14; p = 0.440), 

group 3 was 0.96 (95% CI 0.77-1.19; p = 0.702), group 4 was 1.15 (95% CI 0.94-

1.42; p = 0.180) (Figure 13). 
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Fig 13. Odds ratios of genetic risk score and TC risk
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3.5 Estimates of the effects of BMI on the risk of TC 

The estimated causal odds ratio of BMI on risk of TC was 1.08 (95% CI, 0.87-

1.35). The estimated gender-specific causal odds ratio of BMI on risk of thyroid 

cancer among male was 1.44 (95% CI, 0.75-2.75). For female, the estimated causal 

odds ratio of BMI on the risk of TC was 1.02 (95% CI, 0.82-1.25) (Table 6). 
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Table 6. Estimates of the effects of BMI on the risk of thyroid cancer using MR (OR per 1 kg/m2) 

 

 

All Female Male 

Control Case 
OR 

[95% CI] 

p 

value 
Control Case 

OR 

[95% CI] 

p 

value 
Control Case 

OR 

[95% CI] 

p 

value 

N=6,216 N=744 
1.08 

[0.87-1.35] 
0.48 N=3,497 N=515 

1.02 

[0.82-1.25] 
0.89 N=2,719 N=229 

1.44 

[0.75-2.75] 
0.27 
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Age (years) was classified into three subgroups (younger than 40 yr, 40 to 55 yr, 

and older than 55 yr) and we found a significant association in 40 to 55 yr group and 

older than 55 yr group with the risk of thyroid cancer in both crude (OR 0.15, 95% 

CI 0.11-0.20 for 40 to 55 yr group; OR 0.05, 95% CI 0.04-0.07 for older than 55 yr 

group) and multivariable models (OR 0.14, 95% CI 0.11-0.19 for 40 to 55 yr group; 

OR 0.06, 95% CI 0.04-0.08 for older than 55 yr group), respectively. Female 

(adjusted OR 2.42; 95% CI 1.90-3.10) has a higher risk of thyroid cancer compared 

to male. Smoking status (adjusted OR 1.68; 95% CI 1.32-2.13) and regular exercise 

(adjusted OR 1.52; 95% CI 1.29-1.78) were associated with the increased risk of 

thyroid cancer in the total population, however there was no association between 

alcohol consumption and risk of thyroid cancer observed in the overall population 

(Table 7).
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Table 7. Distributions of potential risk confounders and their associations with the risk for thyroid cancer 
 Control (n=6,216) Case (n=744) Crude OR Adjusted OR* 

Age (years)     

< 40 101 (1.6%) 105 (14.1%) 1 (ref.) 1 (ref.) 

40 - 55 3,031 (48.8%) 465 (62.5%) 0.15 (0.11-0.20) 0.14 (0.11-0.19) 

> 55 3,084 (49.6%) 174 (23.4%) 0.05 (0.04-0.07) 0.06 (0.04-0.08) 

Gender     

Male 2,719 (43.7%) 229 (30.8%) 1 (ref.) 1 (ref.) 

Female 3,497 (56.3%) 515 (69.2%) 1.75 (1.49-2.06) 2.42 (1.90-3.10) 

Alcohol consumption     

Nondrinker 2,953 (47.5%) 336 (45.2%) 1 (ref.) 1 (ref.) 

Drinker 3,263 (52.5%) 408 (54.8%) 1.10 (0.94-1.28) 1.09 (0.91-1.30) 

Smoking status     

Nonsmoker 4,117 (66.2%) 504 (67.7%) 1 (ref.) 1 (ref.) 

Smoker 2,099 (33.8%) 240 (32.3%) 0.93 (0.79-1.10) 1.68 (1.32-2.13) 

Regular exercise     

No 3,360 (54.1%) 322 (43.3%) 1 (ref.) 1 (ref.) 

Yes 2,856 (45.9%) 422 (56.7%) 1.54 (1.32-1.80) 1.52 (1.29-1.78) 

* Adjusted for gender, age, body mass index, alcohol consumption, smoking status, and regular exercise.
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In male population, age was inversely associated with thyroid cancer risk while 

the regular exercise was positively associated with an increased risk of thyroid cancer 

(adjusted OR 1.85; 95% CI 1.38-2.50). No association was found regarding alcohol 

consumption and smoking status. In female population, smoking status (adjusted OR 

2.43; 95% CI 1.78-3.29) and regular exercise (adjusted OR 1.41; 95% CI 1.16-1.71) 

were associated with increased risk of thyroid cancer. In contrast, an age for greater 

than 55 yr (adjusted OR 0.10; 95% CI 0.07-0.15) was inversely associated with 

thyroid cancer risks. No association was observed between alcohol consumption and 

thyroid cancer risk (Table 8).  
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Table 8. Distributions of potential confounders and their associations with the risk for thyroid cancer by gender 

 

* Adjusted for age, body mass index, alcohol consumption, smoking status, and regular exercise 

 
Male Female 

 Control 

(n=2,719) 

Case 

(n=229) 
Crude OR Adjusted OR* Control 

(n=3497) 

Case 

(n=515) 
Crude OR Adjusted OR* 

Age (years)         

< 40 34 (1.3%) 35 (15.3%) 1 (ref.) 1 (ref.) 67 (1.9%) 70 (13.6%) 1 (ref.) 1 (ref.) 

40 – 55 1,147 (42.2%) 153 (66.8%) 0.13 (0.08-0.21) 0.11 (0.06-0.19) 1,884 (53.9%) 312 (60.6%) 0.16 (0.11-0.23) 0.18 (0.13-0.26) 

> 55 1,538 (56.6%) 41 (17.9%) 0.03 (0.01-0.05) 0.02 (0.01-0.04) 1,546 (44.2%) 133 (25.8%) 0.08 (0.06-0.12) 0.10 (0.07-0.15) 

Alcohol consumption         

Nondrinker 581 (21.4%) 35 (15.3%) 1 (ref.) 1 (ref.) 2,372 (67.8%) 301 (58.4%) 1 (ref.) 1 (ref.) 

Drinker 2,138 (78.6%) 194 (84.7%) 1.51 (1.05-2.22) 1.11 (0.75-1.67) 1,125 (32.2%) 214 (41.6%) 1.50 (1.24-1.81) 1.10 (0.90-1.35) 

Smoking status         

Nonsmoker 810 (29.8%) 65 (28.4%) 1 (ref.) 1 (ref.) 3,307 (94.6%) 439 (85.2%) 1 (ref.) 1 (ref.) 

Smoker 1,909 (70.2%) 164 (71.6%) 1.07 (0.80-1.45) 1.10 (0.80-1.53) 190 (5.4%) 76 (14.8%) 3.01 (2.26-3.99) 2.43 (1.78-3.29) 

Regular exercise         

No 1,423 (52.3%) 83 (36.2%) 1 (ref.) 1 (ref.) 1,937 (55.4%) 239 (46.4%) 1 (ref.) 1 (ref.) 

Yes 1,296 (47.7%) 146 (63.8%) 1.93 (1.46-2.56) 1.85 (1.38-2.50) 1,560 (44.6%) 276 (53.6%) 1.43 (1.19-1.73) 1.41 (1.16-1.71) 
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BMI was classified into three subgroups (normal (<23), overweight (23-24.9), 

and obese (≥25)) and we found significant associations between highest quartile of 

BMI with the risk of thyroid cancer in multivariable models adjusted for gender, age, 

alcohol consumption, smoking status, and regular exercise. The BMI was 

significantly associated with an increased risk of thyroid cancer in total population in 

overweight (23-24.9) (adjusted OR 1.24; 95% CI 1.01-1.52) and obese (≥25) 

(adjusted OR 1.29; 95% CI 1.06-1.56) (Table 9). 
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Table 9. The association between thyroid cancer risk and BMI using multivariate logistic regression analysis 

 

 

* Adjusted for age, body mass index, alcohol consumption, smoking status, and regular exercise 

 

 

 All 

 
Control (n=6,216) Case (n=744) Crude OR Adjusted OR* 

BMI (kg/m2), n (%)     

Normal (<23) 2,323 (37.4%) 283 (38.0%) 1 (ref.) 1 (ref.) 

Overweight (23-24.9) 1,644 (26.4%) 199 (26.7%) 0.99 (0.82-1.20) 1.24 (1.01-1.52) 

Obese (≥25) 2,249 (36.2%) 262 (35.2%) 0.96 (0.80-1.14) 1.29 (1.06-1.56) 
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When stratifying by genders, BMI was significantly associated with an increased 

risk of thyroid cancer in both crude and multivariable in male population. In crude 

model, the risk of thyroid cancer is elevated in overweight (23-24.9) (adjusted OR 

2.28; 95% CI 1.85-4.40) and obese (≥25) (adjusted OR 3.40; 95% CI 2.31-5.18). In 

an adjusted model, overweight (23-24.9) (adjusted OR 2.68; 95% CI 1.73-4.27), and 

obese (≥25) (adjusted OR 2.87; 95% CI 1.91-4.44) also led to the same effect. For 

female population, the significant association of BMI with a decreased risk of thyroid 

cancer was only found in crude model in overweight (23-24.9) (adjusted OR 0.79; 

95% CI 0.63-1.00) and obese (≥25) (adjusted OR 0.65; 95% CI 0.52-0.82), this 

association did not remain after adjustment.
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Table 10. The association between thyroid cancer risk and BMI using multivariate logistic regression analysis by 

gender. 
 

* Adjusted for age, body mass index, alcohol consumption, smoking status, and regular exercise 

 Male 

 
Control (n=2,719) Case (n=229) Crude OR Adjusted OR* 

BMI (kg/m2), n (%)     

Normal (<23) 901 (33.1%) 31 (13.5%) 1 (ref.) 1 (ref.) 

Overweight (23-24.9) 742 (27.3%) 72 (31.4%) 2.82 (1.85-4.40) 2.68 (1.73-4.27) 

Obese (≥25) 1,076 (39.6%) 126 (55.0%) 3.40 (2.31-5.18) 2.87 (1.91-4.44) 

 Female 

 
Control (n=3,497) Case (n=515) Crude OR Adjusted OR* 

BMI (kg/m2), n (%)     

Normal (<23) 1,422 (40.7%) 252 (48.9%) 1 (ref.) 1 (ref.) 

Overweight (23-24.9) 902 (25.8%) 127 (24.7%) 0.79 (0.63-1.00) 0.98 (0.77-1.25) 

Obese (≥25) 1,173 (33.5%) 136 (26.4%) 0.65 (0.52-0.82) 0.90 (0.71-1.14) 
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4. Discussion 

4.1 Summary of findings 

We used the genomic variant data on BMI and thyroid cancer derived from 

National Cancer Center (NCC) and the Korean Genome Epidemiology Study 

(KoGES). In total, 744 cases from NCC and 6,216 healthy controls from both NCC 

and KoGES were selected. By combining a genetic variation of 55 BMI variants into 

robust genetic instruments and supporting the analyses with data on thyroid cancer 

risk, we found that BMI is not significantly related to the risk of thyroid cancer in the 

Korean population of both women and men. These findings propose that BMI is not 

a causal risk factor for thyroid cancer and yet the observational association is most 

possibly explained by reverse causation or confounders. 

4.2 Observational studies on BMI and thyroid cancer risk 

The trend of rising thyroid cancer incidence over the past few decades also 

coincides with the growing trend of obesity, but whether or how they are correlated 

is largely unknown. Prior to thyroid cancer disease, observational studies have shown 

contradictory results with interest to the relationship between BMI and thyroid cancer 

risk. A pooled analysis of prospective cohorts showed a summarized hazard ratio of 

1.53 for thyroid cancer in obese men and women (BMI ≥ 30kg/m2) [41]. A meta-

analysis of 21 observational studies found that obesity is related to increased PTC 

risk and reduced medullary thyroid cancer risk [40]. Another meta-analysis 
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conclusively reported that, a 5 kg/m2 increment in BMI was strongly related to the 

increased risk of thyroid cancer in men (RR, 1.33; 95% CI, 1.04-1.70) [132]. In the 

current study, it has been identified that there is a positive association between BMI 

and TC risk. An obese (OR, 1.29; 95% CI, 1.06-1.56) and an overweight (OR, 1.24; 

95% CI, 1.01-1.52) have shown significant associations with TC risk (Table 9). 

Furthermore, a similar relationship was observed for the male (OR, 2.87; 95% CI, 

1.91-4.44) (Table 10). However, there is an inverse association between BMI and TC 

risk for female even though it is not significant. Recently, a prospective cohort study 

from the Korean Cancer Prevention Study-II reported that obese male and female 

under 50 years old are better to be considered for the higher possibility of TC 

development [134]. It is important to note that genetic predisposition is one the of 

well-defined non-modifiable risk factors towards the TC risk. However, a case-

control study based on genomic studies concluded that selected obesity-related 

genetic variants were not linked to PTC risk [133]. Some reasons can be explained 

by the phenomenon that obese people have an increased risk of thyroid cancer. First, 

elevated serum thyroid-stimulating hormone (TSH) levels are clinically associated 

with increased risk of malignancy in human thyroid nodules consequently, related to 

the late stage of the disease. Many observational studies in euthyroid subjects showed 

a positive correlation between BMI and serum TSH. In addition, TC patients have 

higher leptin levels than the healthy participants in a case-control study. Leptin was 

also indicated to intensify the migration of PTC cells. Furthermore, the well-known 

metabolic perturbation in obesity which is, insulin resistance may contribute to 

thyroid tumor growth. Insulin resistance can have effects with insulin straight 
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wrapper to insulin receptors or can stimulate insulin-like growth factors (IGFs), 

estrogen and other hormones such as TSH to improve the growth of thyroid 

carcinoma cells. Another reason of disagreement may be due to a specificity of study 

biases, or the difference of adjustment for confounder, and use of unusual cutoffs to 

determine the modifiable exposure [40]. Those controversies lead to popular issues 

in observational epidemiology, where associations are inclined to confounders and 

reverse causality. In this study, there is evidence that MR contribution to BMI is not 

related to the risk of thyroid cancer without the inherent limitations in observational 

studies. These results break fresh ground in the study of assessing the causality of the 

observed association between exposure and outcome. 

4.3 Causal association using MR analysis 

MR is an analytic approach to the use of genetic variants in non-experimental to 

assess causal inference between an exposure (risk factors) and an outcome (usually a 

disease). Research evidence together with GWAS has been published over the past 

years, which is easily accessible to conduct MR studies. According to our literature 

research, 546 studies have used MR analysis (as of December 2017). MR has been 

successfully applied to a wide range of epidemiological studies, causal effects of 

biomarkers on disease [134-138],  estimating the causal effects of various behaviors 

[139-141]. The most typically studied exposures were adiposity measures including 

BMI, lipid quantity, and portion body fat (130 studies), C-reactive protein (81 

studies), alcohol use (73 studies), and vitamin D levels (62 studies) (Table 1). Paucity 

of data with regard to the causal association between BMI and TC risk is one of the 
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limitations in these studies. However, in this study, we primarily focused on the MR 

analysis to estimate the causal association between BMI and TC risk. 

There were several methods used for IV estimation. It has been identified that 

two-stage least square (2-SLS) regression and a Wald-type/ratio estimator as most 

commonly used methods from several other IV estimation strategies. For instance, 

the Wald-type/ratio estimator was used to assess the association between uric acid 

and ischaemic heart disease. The estimates were derived by first dividing the log of 

the hazard ratio for genotype-ischaemic heart disease by the genotype-exposure 

coefficient [136]. In another study, 2-SLS regression was used to estimate the causal 

effect of C-reactive protein (CRP) on blood pressure, pulse pressure, and 

hypertension. A point estimates was identified by the ratio of the coefficient for the 

regression of outcome on genotype and CRP on genotype [142]. Additionally, a study 

of causal effect of vitamin D on serum adiponectin used 2-SLS regression. The first 

stage is a linear regression of vitamin D on the instruments (genotype), which 

generates predicted values for vitamin D. The second stage is a linear regression of 

adiponectin on the predicted values [143]. In our study, we used Wald-type/ratio 

estimator to estimate the causal effect of BMI on the TC risk. The estimation of the 

magnitude of the causal effect was obtained from the linear regression coefficient of 

BMI on genetic variants and the logistic regression coefficient of TC risk on genetic 

variants, respectively. With a single IV, the 2-SLS regression estimate is the same as 

the Wald-type/ratio estimator. With multiple IVs, the 2-SLS regression can be 

considered as a weighted average of the Wald-type/ratio estimator calculated using 

the instruments one at the time. Several other methods of IV estimation were used for 
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IV estimation. As IV probit regression was used in associations effect of circulating 

CRP and cancer risk [144], generalized method of moments was used to obtain 

estimates of the causal association between BMI and blood pressure [145]. Also, a 

study based on the assessing causal effect between plasma CRP and chronic 

obstructive pulmonary disease considered generalized least squares regression [146]. 

Lastly, the limited information likelihood was used to estimate causal association of 

plasma HDL cholesterol with myocardial infarction [147]. Based on the complexity 

of methods, the simplest way to estimate the causal effect of the exposure on the 

outcome is via the Wald-type/ratio estimator, which was used in our study to estimate 

the causal effect of BMI on the TC risk.  

With regard to the types of a genetic instrument used, there were three main 

types of genetic instrument such as single SNP, multiple SNPs and genetic risk score 

(GRS) or allele score. The study on causal relationship between adiposity and 

cardiometabolic used only the adiposity-associated variant rs9939609 at the FTO 

locus as an IV [148]. A study examining the association between aldehyde 

dehydrogenase 2 (ALDH2) and risk of hypertension and level of blood pressure used 

a common polymorphism in ALDH2 as an instrument [139]. In another study on the 

causal association of homocysteine level with the development of type 2 diabetes 

(T2B), the MR coefficient was estimated using MTHFR 677C > T as instrument 

[149]. Additionally, the single genetic variant rs10455872 has been used as an 

instrument to test whether the association between lipoprotein(a) levels and T2B is 

causal [150]. When we use single SNP as IV, the median bias of the Wald-type/ratio 

estimator or 2-SLS regression is insignificant for all but the weakest of IVs [151]. 
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Similarly, when we use instrument independently which can explain variability in the 

exposure, use of multiple instruments can improve the precision of IV estimates. 

Firstly, the population stratification occurs when a sample is composed of a mixture 

of populations. Some genetic variants are potential candidates for using as an IVs in 

MR studies could have been influenced by population stratification. Secondly, 

pleiotropy refers to a single gene having multiple biological functions. In the context 

of MR analyses, SNPs in or near genes with pleiotropic effects that directly or 

indirectly influence the outcome other than through the exposure of interest violate 

the IV assumptions. Lastly, linkage disequilibrium (LD) is the correlation between 

allelic states at different loci on the same chromosome when assessed within a 

population. If SNPs are also in LD with a variant that affects the outcome of interest 

via a pathway that does not include the exposure of interest, the IV assumptions will 

be violated. Comparing IV estimates based on multiple genetic variants with 

independent effects on the exposure of interest provides an additional way to identify 

bias resulting from these issues. If IV estimates from different variants are similar, it 

is less plausible that LD or pleiotropy are present. [152]. Taking into consideration 

the studies which used multiple SNPs, one study found that causal roles of vitamin 

B12 and transcobalamin in prostate cancer. The set of SNPs in the B12-related gene 

(MTR, MTRR, FUT2, TCN2, TCN1, CUBN, and MUT ) were used as an IVs to 

estimate the association of vitamin B12 with prostate cancer [153]. Considering a 

study based on leukocyte telomere length and T2B risk in postmenopausal women, 

the IVs were selected separately for each racial/ethnic and in total six instruments for 

whites, four for blacks, seven for Hispanics, and two for Asians [154]. Moreover, the 
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rs2282679 and common filaggrin (FLG-a gene encoding a protein which provides 

skin hydration and photo protection) gene were used to examines the causal effect of 

vitamin D on serum adiponectin [143]. Furthermore, in the study examining the 

association of testosterone and cardiovascular risk factors (blood pressure, low-

density lipoprotein cholesterol, high-density lipoprotein cholesterol, and fasting 

glucose); three testosterone-related SNPs (rs10046, rs1008805, and rs1256031) were 

selected for IVs analysis [155]. 

In our study, we conducted to assess causal effects of BMI and TC risk, for the 

identification of multiple SNPs as IVs. We took advantage of published results from 

a GWAS of obesity (GIANT study) and identified 55 independent SNPs strongly 

associated with obesity. They selected SNPs based on genome-wide significance 

(p<5×10-8) (Supplementary Material). Genotypic effects on phenotypes are 

typically small, thus MR analysis requires very large sample sizes to obtain adequate 

power. When multiple instruments are used in the Wald estimator, the resulting IV 

estimate can be viewed as the efficient linear combination of the separate IV 

estimates. Provided that each instrument is valid, use of multiple instruments will 

increase the precision of the IV estimate compared with the separate IV estimates. 

However, inclusion of instruments that explain only a small proportion of the 

variability in the phenotype can increase finite sample bias of IV estimates. 

The arising problem from including multiple IVs in an analysis is a weak 

instrument. A weak instrument is defined as an IV for which the statistical evidence 

of association with the exposure is not strong. The F-statistic from the regression of 

the exposure on the IV is usually cited as a measure of the strength of an instrument. 
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The value of F-statistic less than 10 is often taken to indicate a weak instrument [103]. 

Genetic risk score (GRS) or allele score is a single summarizing multiple genetic 

variant associated with a risk factor (exposure). Using a GRS as a single IV rather 

than each genetic variant as a separate IV can resolve the problem in IV estimation 

resulting from weak instrument. GRS has been constructed for many studies, 

including study influence blood pressure and cardiovascular disease risk; GRS was 

constructed based on 29 SNPs that significantly associated with Hg systolic and Hg 

diastolic [156]. Also, the combining of five SNPs rs780094 (GCKR), rs560887 

(G6PC2), rs4607517 (GCK), rs13266634 (SLC30A8), and rs10830963 (MTNR1B) of 

fasting glucose to find the causal association between circulating glucose and carotid 

intima-media thickness [157]. Additionally, the study to examine the causal 

association of lipoprotein(a) (Lp(a)) with early atherosclerosis used GRS based on 10 

Lp(a)-related SNPs as an instrument for Lp(a) levels [158]. In our study, a genetic 

score for BMI (BMI-GRS) was used to estimate the causal effect of BMI on TC risk. 

The BMI-GRS was computed from 55 BMI-associated SNPs and explained 1.24% 

of the variance in BMI. The F-value of 78 from the first state regression suggests that 

the GRS was a robust instrument for BMI. Although GRS can address a problem in 

weak instrument, more complex issues such as analyses with multiple risk factors are 

still unsolved using GRS and require the use of alternative methods. 
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4.4 Causal association between BMI and common diseases using 

MR analysis 

Globally, obesity has raised as a major public health concern. Around 40-70% 

of inter-individual variability in BMI, commonly used to assess obesity, has been 

attributed to genetic factor [73]. It is a potential risk factor for several popular diseases 

that usually continues in uncertainty whether the risk factor is causal or whether the 

relationships are just prone to the effect of confounding. MR is a contemporary 

method that can be used to prove a causal relationship between a modifiable exposure 

and a disease (outcome) using an IV in observational studies. There were several 

studies to examine the causal associations between BMI and a variety of human 

general disorders using MR analysis. 

Recently, a study which assesses the causal association of BMI and common 

diseases indicated that people whose BMI are 1 SD (SD=3.98 for BMI in European 

men) above the population mean will have 3.29 times increases the risk of T2D 

compared with the population prevalence [159]. Another study reported that 

increasing BMI is causally related to higher prevalence of asthma (OR, 1.009; 95% 

CI, 1.004-1.013), but not with hay fever (OR, 0.998; 95% CI, 0.994-1.002) or allergic 

sensitization (OR, 0.999; 95% CI, 0.986-1.012). For lung function, BMI was 

associated with decrease in forced expiratory volume in one-second (β, -0.0012; 95% 

CI, -0.0019-0.0006) and forced vital capacity (β, -0.0022; 95% CI, -0.0031-0.0014) 

[108]. In the study regarding breast cancer risk using MR analysis observed that an 

inverse association between BMI and breast cancer risk (OR per 5 kg/m2, 0.65; 95% 
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CI, 0.56-0.75). The associations were similar in both premenopausal (OR per 5 kg/ 

m2, 0.44; 95% CI, 0.31-0.62) and postmenopausal breast cancer (OR per 5 kg/m2, 

0.57; 95% CI, 0.46-0.71) [130]. Carreras-Torres et al. have shown a causal role of 

BMI on lung cancer risk for two of major histological subtypes [123]. It concluded 

that there are positive associations between BMI and small cell carcinoma (OR, 1.52; 

95% CI, 1.15-2.00) and squamous cell carcinoma lung cancer (OR, 1.20; 95% CI, 

1.01-1.43) [123]. Moreover, Holmes et al study observed causal effects of BMI on a 

range of cardiometabolic traits [160]. A 1 kg/m2 genetically elevated BMI increased 

fasting glucose (0.18 mmol/l; 95% CI, 0.12-0.24), fasting insulin (8.5%; 95% CI, 5.9-

11.1), interleukin-6 (7.0%; 95% CI, 4.0-10.1), and systolic blood pressure (0.70 

mmHg; 95% CI, 0.24-1.16) and reduced high-density lipoprotein cholesterol (-0.02 

mmol/l; 95% CI, -0.03 to -0.01) and low-density lipoprotein cholesterol (LDL-C, -

0.04 mmol/l; 95% CI, -0.07 to -0.01). However, the causal effect of BMI on coronary 

heart disease risk is uncertain [160]. In addition, the study on causal association of 

obesity and multiple sclerosis showed 1 standard deviation increase in genetically 

determined BMI (kg/m2) has increased odds of multiple sclerosis by 41% (OR, 1.41; 

95% CI, 1.20-1.66) [127]. 

In our study, the causal estimate of BMI and TC risk results showed evidence 

that genetically influenced BMI was not causally associated with increased risk of 

TC (OR per 1 kg/m2, 1.08; 95% CI, 0.87-1.35). In gender-specific IV analyses higher 

BMI was not associated with higher risk of TC among women (OR per 1 kg/m2, 1.02; 

95% CI, 0.82-1.25). For men, genetically influenced BMI was not associated with 

TC risk (OR per 1 kg/m2, 1.02; 95% CI, 0.75-2.75). It is clear that the concept of MR 
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approach can be considered as an alternative for RCT where the findings make robust 

conclusions rather than other observational studies. For instance, several MR studies 

concluded that the BMI had risk effects on T2D (OR 3.29), hypertensive disease (OR 

1.85), and cardiovascular disease (OR 1.30) which have been also confirmed by RCT 

[159, 161]. 

The most frequently used genetic instrument types in MR analysis are GRS and 

multiple SNPs or multiple instruments in which BMI is considered as an exposure 

(As described in the previous section). The GRS are used in MR for reasons of 

simplicity, increased power, and avoidance of weak instrument bias. Therefore, there 

were many studies using GRS for obesity to obtain causal inference. Skaaby et al. 

used GRS which was created using 26 BMI-associated SNPs to examine the causal 

effect of BMI on asthma, hay fever, allergic sensitization [108]. Also, in another study 

which focused on association of BMI and gastric cancer risk, weighted GRS (wGRS) 

was generated from 37 BMI-associated genetic variants as an IV [114]. Additionally, 

the causal role of obesity was examined in the development of depression using GRS 

comprised of 31 SNPs which were previously identified as robust genetic markers of 

body weight [162]. In this study, we developed wGRS, including 55 risk SNPs from 

the largest GWAS on BMI [73]. We aimed to investigate a causal role for elevated 

BMI and TC risk by using MR analysis. In our results, 55 SNPs were selected to 

construct a BMI-GRS from the largest meta-analysis of BMI-GWAS published to 

date [73]. To date, the number of BMI-associated SNPs represent a large, statistically 

significant, portion of the explained variance of observed BMI is quite substantial, 
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and F-statistic is considerably high. Nevertheless, the IV created in our study is 

sufficiently strong for conducting MR analyses.  

4.5 Strengths and weaknesses 

There are two main steps in order to conduct MR analysis, which is an 

exploration of the main three conditions and estimation of the causal effect of 

phenotypes and outcome. We tested these conditions using Chi-square test, linear 

regression, and logistic regression and found no evidence of violation of these 

conditions. 

Our study has several strengths. Firstly, our study was conducted on a largest 

homogenous population. We took that advantage by using the summary statistic from 

largest genetic studies of obesity. To our knowledge, this is the first MR study of the 

association of BMI and TC risk and was undertaken in a large sample size. Moreover, 

the individual thyroid cancer data in Korea from both NCC and KoGES. It has more 

advantages than using the single dataset for analysis. Secondly, the number of SNPs 

is 55, which is quite large and means we extracted huge genetic information for the 

study. One important assumption in a successful MR study is that genetic instruments 

must be strongly associated with the exposure (here is BMI). Our results have shown 

that the F-statistic of the first-stage (linear regression of combining information of 55 

SNPs) was large (78), which means a weak instrument bias was unlikely (a 

sufficiently strong instrument with F-statistic greater than 10). Additionally, there is 

a considerably high statistical power due to large sample size in the current study. 
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Last but not least, our study used powerful consortia dataset without measuring the 

parameter. It turns out saving both the time and cost. 

The weakness of our study could be due to use of combined data from the 

different studies. The problems came up because we could not figure out whether the 

relationship between BMI and TC risk is linear or not. The literature research showed 

that the relationship between BMI and health problems was non-linear correlations. 

Our MR analysis is assumed that BMI with a continuous variable was linear, which 

is not examined with summary data. Another limitation of our study is that it does not 

provide an explanation of mechanisms by which BMI is causally associated with TC. 

Finally, our study has provided best genetic evidence to date supplementing a 

causal association between BMI and TC risk. It is not conceivable based on the 

existing data to completely oppose the hypothesis.  

5. Conclusion 

In conclusion, combining significant genetic variation of BMI genes into strong 

genetic instruments and extending these investigations with data on TC risk of 55 

BMI variants from National Cancer Center (NCC) and the Korean Genome 

Epidemiology Study (KoGES), we found that BMI is not related to the risk of TC in 

the Korean population.  

Although BMI is not a potentially modifiable risk factor for TC, obesity is 

associated with a variety of health issues that are of clinical and public health 

significance and should be taken into account. The strong evidence showed that being 

overweight or obese enhances the risk for more than 10 types of cancer such as breast 
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cancer, kidney cancer, esophageal, and colorectal cancer. Our findings of the causal 

effects of BMI and TC risk could have a significant impact on several academic fields 

including medical research, the pharmaceutical industry, and public health. It can be 

suggested that further studies to replicate this association would be required 

considering insight into mechanisms before giving some recommendation to the 

general population.   
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Supplementary Material 

Selecting of BMI variants 

Selecting process was initiated by using the summary statistics dataset from the 

website of the GIANT consortium. 

(https://www.broadinstitute.org/collaboration/giant/index.php/Main_Page). We 

used the combined gender, All Ancestries dataset file. 

In order to choose the index SNPs were associated with BMI, the significance level 

of the genome-wide is 5x10-8 was set for a cut-off value. For making sure that each 

of SNPs is independent of each other we were used the two criteria which are Linkage 

Disequilibrium (LD) with the R2 threshold of 0.001 and physical distance threshold 

within 10,000 kilobases. All of the selected index SNPs were ranked based on p-value 

(p=5x10-8) from smallest to largest. The reference dataset for checking independent 

of index SNPs was used “1000 Genomes Project” (http://www.1000genomes.org/).  

The officially PLINK website provides the base code for selecting the SNPs 

(http://zzz.bwh.harvard.edu/plink/clump.shtml) 

The selecting parameters were as follows: 

Significance thresholds for index SNPs (p-value)    5×10-8 

Secondary significance threshold for clumped SNPs (p-value)  5×10-8 

LD threshold for clumping (R2)        0.001 

Physical distance threshold for clumping (kilobases)    10000 

  

https://www.broadinstitute.org/collaboration/giant/index.php/Main_Page
http://www.1000genomes.org/
http://zzz.bwh.harvard.edu/plink/clump.shtml
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Supplementary Table 1. List of selected SNPs, nearest gene and their 

function 

SNPs Genes Function of nearest gene 

rs1000940 RABEP1 Protein homodimerization activity and growth factor activity 

rs10132280 STXBP6 
Phosphatidylinositol-4,5-bisphosphate binding and GTP-Rho 

binding 

rs10733682 LMX1B 
Transcription factor activity, sequence-specific DNA 

binding and sequence-specific DNA binding 

rs10840100 TRIM66 Protein homodimerization activity and chromatin binding 

rs11030104 BDNF Receptor binding and neurotrophin TRKB receptor binding 

rs11165643 PTBP2  Nucleic acid binding and RNA binding 

rs11191511 CNNM2 Adenyl nucleotide binding 

rs11692326 None Intergenic 

rs12286929 CADM1 Protein homodimerization activity and PDZ domain binding 

rs12429545 OLFM4 Protein homodimerization activity and cadherin binding 

rs12940622 RPTOR  Protein complex binding 

rs13021737 TMEM18 No further details 

rs13025697 None Intergenic 

rs13130484 GNPDA2  
Hydrolase activity and glucosamine-6-phosphate deaminase 

activity 

rs13201877 IFNGR1 
Cytokine receptor activity and interferon-gamma receptor 

activity. 

rs13329567 None Intergenic 

rs1421085 FTO Errous iron binding and oxidative RNA demethylase activity. 

rs1441264 MIR548A2 RNA gene 

rs1460676 FIGN 
Protein C-terminus binding and microtubule-severing ATPase 

activity 

rs14810 KCTD15  Protein coding 

rs1516725 ETV5 
Transcription factor activity, sequence-specific DNA 

binding and transcription regulatory region DNA binding 
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rs1528435 UBE2E3 Ligase activity and acid-amino acid ligase activity. 

rs16851483 RASA2 GTPase activator activity 

rs17094222 HIF1AN Protein homodimerization activity and oxidoreductase activity 

rs17724992 PGPEP1 
Cysteine-type peptidase activity and pyroglutamyl-peptidase 

activity. 

rs1928295 TLR4 Receptor activity and lipopolysaccharide binding 

rs2060604 None Intergenic 

rs2112347 HMGCR Protein homodimerization activity and NADP binding 

rs2176598 HSD17B12 Oxidoreductase activity and collagen binding 

rs2229616 MC4R  
G-protein coupled receptor activity and peptide hormone 

binding 

rs2365389 FHIT Identical protein binding and hydrolase activity. 

rs2820292 NAV1 Protein coding 

rs2836754 ETS2 

Transcription factor activity, sequence-specific DNA 

binding and RNA polymerase II core promoter proximal region 

sequence-specific DNA binding 

rs3800229 FOXO3  
Transcription factor activity, sequence-specific DNA 

binding and protein kinase binding 

rs3817334 MTCH2 Protein coding 

rs3888190 ATP2A1  Calcium ion binding and nucleotide binding. 

rs4615388 None Intergenic 

rs4740619 CCDC171 
Transcription factor activity, sequence-specific DNA 

binding and signal transducer activity. 

rs543874 SEC16B Protein coding 

rs6091540 ZFP64 Nucleic acid binding 

rs6457796 UHRF1BP1 Identical protein binding and histone deacetylase binding.  

rs6477694 EPB41L4B 
Structural constituent of cytoskeleton and cytoskeletal protein 

binding.  

rs6567160 MC4R  
G-protein coupled receptor activity and peptide hormone 

binding 

rs657452 AGBL4 Tubulin binding and metallocarboxypeptidase activity 
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rs6804842 RARB 
Transcription factor activity, sequence-specific DNA 

binding and protein complex binding. 

rs7138803 FAIM2  Protein coding 

rs7243357 GRP Receptor binding and neuropeptide hormone activity. 

rs7599312 ERBB4 Protein homodimerization activity and protein kinase activity. 

rs7715256 GALNT10  
Carbohydrate binding and polypeptide N-

acetylgalactosaminyltransferase activity 

rs7903146 TCF7L2 
Transcription factor activity, sequence-specific DNA 

binding and chromatin binding 

rs891389 NPC1  Receptor activity and cholesterol binding 

rs9374842 LOC285762 RNA gene 

rs943005 None Intergenic 

rs9540493 MIR548X2 RNA gene 

rs9579083 MTIF3 
Translation initiation factor activity and ribosomal small 

subunit binding. 

Variants are listed here with the nearest genes and putative function of that gene listed 

by http://www.genecards.org/, https://www.infino.me/, 

https://www.selfdecode.com/, and https://www.ncbi.nlm.nih.gov/snp/. Just because a 

gene is near to a given variant, it does not mean that the variant exerts its effect on 

thyroid cancer via BMI because of that gene. 

  

http://www.genecards.org/
https://www.infino.me/
https://www.selfdecode.com/
https://www.ncbi.nlm.nih.gov/snp/
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Appendix 

Appendix 1. Structured General Questionnaires for Screenee Cohort 
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Appendix 2. The Approval by the Institutional Review Board (IRB) of 

the National Cancer Center 
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